2023
RAMIHM generates fully human monoclonal antibodies by rapid mRNA immunization of humanized mice and BCR-seq
Ren P, Peng L, Yang L, Suzuki K, Fang Z, Renauer P, Lin Q, Bai M, Li T, Clark P, Klein D, Chen S. RAMIHM generates fully human monoclonal antibodies by rapid mRNA immunization of humanized mice and BCR-seq. Cell Chemical Biology 2023, 30: 85-96.e6. PMID: 36640761, PMCID: PMC9868106, DOI: 10.1016/j.chembiol.2022.12.005.Peer-Reviewed Original ResearchConceptsHuman monoclonal antibodyHumanized miceMonoclonal antibodiesMemory B cell populationsHumanized transgenic miceBroad antibody responseB cell populationsG protein-coupled receptor targetsNeutralizing antibodiesPeripheral bloodAntibody responseImmunotherapy targetClinical vaccinesPlasma BCell sequencingTransgenic miceImmunization methodReceptor targetsAntibodiesMiceCell populationsHigh potencyImmunizationHigh rateAntibody discovery
2022
Mapping subcellular localizations of unannotated microproteins and alternative proteins with MicroID
Na Z, Dai X, Zheng SJ, Bryant CJ, Loh KH, Su H, Luo Y, Buhagiar AF, Cao X, Baserga SJ, Chen S, Slavoff SA. Mapping subcellular localizations of unannotated microproteins and alternative proteins with MicroID. Molecular Cell 2022, 82: 2900-2911.e7. PMID: 35905735, PMCID: PMC9662605, DOI: 10.1016/j.molcel.2022.06.035.Peer-Reviewed Original ResearchConceptsSubcellular localizationProximity biotinylationSmall open reading framesAlternative proteinsOpen reading frameHigh-throughput technologiesSubnuclear organellesCanonical proteinsRRNA transcriptionSubcellular compartmentsReading frameProteogenomic identificationProtein compositionAmino acidsMicroproteinsProteinBiotinylationLocalizationTurboIDTranscriptionOrganellesMouse modelPolypeptideNucleoliExpressionDevelopment of an efficient reproducible cell-cell transmission assay for rapid quantification of SARS-CoV-2 spike interaction with hACE2
Ssenyange G, Kerfoot M, Zhao M, Farhadian S, Chen S, Peng L, Ren P, Dela Cruz CS, Gupta S, Sutton RE. Development of an efficient reproducible cell-cell transmission assay for rapid quantification of SARS-CoV-2 spike interaction with hACE2. Cell Reports Methods 2022, 2: 100252. PMID: 35757815, PMCID: PMC9213030, DOI: 10.1016/j.crmeth.2022.100252.Peer-Reviewed Original ResearchConceptsAnti-spike monoclonal antibodiesTransmission assaysTherapeutic antiviral drugsSARS-CoV-2Quantitative readoutVirus-cell bindingRapid quantificationConvalescent seraNeutralization assaysAntiviral drugsResearch reagentsSmall molecule drugsClinical settingViral replicationPseudotyped particlesMonoclonal antibodiesLaboratory equipmentQuantitative assayOmicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2
Fang Z, Peng L, Filler R, Suzuki K, McNamara A, Lin Q, Renauer PA, Yang L, Menasche B, Sanchez A, Ren P, Xiong Q, Strine M, Clark P, Lin C, Ko AI, Grubaugh ND, Wilen CB, Chen S. Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2. Nature Communications 2022, 13: 3250. PMID: 35668119, PMCID: PMC9169595, DOI: 10.1038/s41467-022-30878-4.Peer-Reviewed Original ResearchConceptsHeterologous boosterSARS-CoV-2Antibody responseMRNA vaccinesMRNA vaccinationDelta variantOmicron variantType of vaccinationStrong antibody responseMRNA vaccine candidatesVaccine candidatesNeutralization potencyImmune evasionSARS-CoV.Two weeksComparable titersVaccinationVaccineTiters 10MiceOmicronWeeksWA-1LNP-mRNABoosterHigh-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells
Chen JS, Chow RD, Song E, Mao T, Israelow B, Kamath K, Bozekowski J, Haynes WA, Filler RB, Menasche BL, Wei J, Alfajaro MM, Song W, Peng L, Carter L, Weinstein JS, Gowthaman U, Chen S, Craft J, Shon JC, Iwasaki A, Wilen CB, Eisenbarth SC. High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Science Immunology 2022, 7: eabl5652. PMID: 34914544, PMCID: PMC8977051, DOI: 10.1126/sciimmunol.abl5652.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionSARS-CoV-2Follicular helper cellsB cell responsesHelper cellsAntibody productionCell responsesSARS-CoV-2 vaccinationB-cell receptor sequencingSevere COVID-19Cell receptor sequencingIndependent antibodiesT cell-B cell interactionsViral inflammationAntiviral antibodiesImmunoglobulin class switchingVirus infectionGerminal centersViral infectionClonal repertoireInfectionAntibodiesClass switchingCOVID-19Patients
2020
CRISPR-GEMM Pooled Mutagenic Screening Identifies KMT2D as a Major Modulator of Immune Checkpoint Blockade
Wang G, Chow RD, Zhu L, Bai Z, Ye L, Zhang F, Renauer PA, Dong MB, Dai X, Zhang X, Du Y, Cheng Y, Niu L, Chu Z, Kim K, Liao C, Clark P, Errami Y, Chen S. CRISPR-GEMM Pooled Mutagenic Screening Identifies KMT2D as a Major Modulator of Immune Checkpoint Blockade. Cancer Discovery 2020, 10: 1912-1933. PMID: 32887696, PMCID: PMC7710536, DOI: 10.1158/2159-8290.cd-19-1448.Peer-Reviewed Original ResearchConceptsImmune checkpoint blockadeCheckpoint blockadeCancer typesMajority of patientsRemarkable clinical efficacyFraction of patientsMajor modulatorComplex molecular landscapeMultiple cancer typesClinical efficacyICB responseImmune infiltrationTumor immunogenicityAntigen presentationMutation burdenMouse modelPatient stratificationMutant tumorsTumor microenvironmentIssue featurePatientsTumorsMolecular landscapeBlockadeCancer
2019
Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity
Wang G, Chow RD, Bai Z, Zhu L, Errami Y, Dai X, Dong MB, Ye L, Zhang X, Renauer PA, Park JJ, Shen L, Ye H, Fuchs CS, Chen S. Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity. Nature Immunology 2019, 20: 1494-1505. PMID: 31611701, PMCID: PMC6858551, DOI: 10.1038/s41590-019-0500-4.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigen PresentationAntigens, NeoplasmCancer VaccinesCell Line, TumorClustered Regularly Interspaced Short Palindromic RepeatsCoculture TechniquesCombined Modality TherapyDependovirusDisease Models, AnimalFemaleGene Expression Regulation, NeoplasticGenetic TherapyGenetic VectorsHEK293 CellsHumansImmunotherapyInjections, IntralesionalLymphocytes, Tumor-InfiltratingMaleMiceNeoplasmsT-Lymphocytes, CytotoxicTumor MicroenvironmentConceptsAntitumor immunityImmune responseCell-based vaccination strategiesElicits potent antitumor immunityEnhanced T cell infiltrationElicit potent immune responsesCurrent immunotherapy modalitiesStrong antitumor immunityAntitumor immune responseT cell infiltrationPotent antitumor immunityPotent immune responsesAntitumor immune signaturesMultiple cancer typesImmune signaturesImmunotherapy modalitiesTreatment modalitiesCell infiltrationVaccination strategiesTumor antigensVirus deliveryTumor microenvironmentImmunotherapyCancer typesCancer treatmentIn vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma
Ye L, Park JJ, Dong MB, Yang Q, Chow RD, Peng L, Du Y, Guo J, Dai X, Wang G, Errami Y, Chen S. In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nature Biotechnology 2019, 37: 1302-1313. PMID: 31548728, PMCID: PMC6834896, DOI: 10.1038/s41587-019-0246-4.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDCD8-Positive T-LymphocytesCell Line, TumorCRISPR-Cas SystemsDependovirusFemaleGene EditingGlioblastomaHumansImmunotherapy, AdoptiveLymphocyte Activation Gene 3 ProteinMaleMembrane ProteinsMiceN-AcetylglucosaminyltransferasesNeoplasm ProteinsProtein Disulfide-IsomerasesReceptors, Cell SurfaceRNA, Guide, CRISPR-Cas SystemsTransposasesXenograft Model Antitumor AssaysConceptsRNA cassetteMembrane protein targetsPrimary murine T cellsGenetic screening systemSingle-cell sequencingScreen hitsSleeping Beauty (SB) transposonCRISPR screensMembrane proteinsCell sequencingT cellsAdeno-associated virusGenomic integrationMembrane targetsMurine T cellsProtein targetsEfficient geneHuman GBM cellsGene editingT cell receptor transgenic modelGBM cellsBeauty transposonPDIA3T cell-based immunotherapyAntigen-specific killingSystematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells
Dong MB, Wang G, Chow RD, Ye L, Zhu L, Dai X, Park JJ, Kim HR, Errami Y, Guzman CD, Zhou X, Chen KY, Renauer PA, Du Y, Shen J, Lam SZ, Zhou JJ, Lannin DR, Herbst RS, Chen S. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell 2019, 178: 1189-1204.e23. PMID: 31442407, PMCID: PMC6719679, DOI: 10.1016/j.cell.2019.07.044.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBreast NeoplasmsCD8-Positive T-LymphocytesCell Line, TumorClustered Regularly Interspaced Short Palindromic RepeatsCytokinesFemaleHumansImmunologic MemoryImmunotherapyMaleMiceMice, KnockoutNF-kappa BProgrammed Cell Death 1 ReceptorRNA HelicasesRNA, Guide, CRISPR-Cas SystemsTranscriptomeConceptsCRISPR screensTarget discoveryGenome-scale CRISPR screensCD8 TRNA helicase DHX37Vivo CRISPR screensGenetic screenGenome scaleTranscriptomic profilingBiochemical interrogationAntigen-specific CD8 TAnti-tumor immune responseFunctional regulatorTriple-negative breast cancerDHX37Essential roleTim-3PD-1Cytokine productionTumor infiltrationImmunotherapy targetImmunotherapy settingsRegulatorBreast cancerT cellsIn vivo profiling of metastatic double knockouts through CRISPR–Cpf1 screens
Chow RD, Wang G, Ye L, Codina A, Kim HR, Shen L, Dong MB, Errami Y, Chen S. In vivo profiling of metastatic double knockouts through CRISPR–Cpf1 screens. Nature Methods 2019, 16: 405-408. PMID: 30962622, PMCID: PMC6592845, DOI: 10.1038/s41592-019-0371-5.Peer-Reviewed Original Research
2018
Programmable sequential mutagenesis by inducible Cpf1 crRNA array inversion
Chow RD, Kim HR, Chen S. Programmable sequential mutagenesis by inducible Cpf1 crRNA array inversion. Nature Communications 2018, 9: 1903. PMID: 29765043, PMCID: PMC5954137, DOI: 10.1038/s41467-018-04158-z.Peer-Reviewed Original ResearchMapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR–mediated direct in vivo screening
Wang G, Chow RD, Ye L, Guzman CD, Dai X, Dong MB, Zhang F, Sharp PA, Platt RJ, Chen S. Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR–mediated direct in vivo screening. Science Advances 2018, 4: eaao5508. PMID: 29503867, PMCID: PMC5829971, DOI: 10.1126/sciadv.aao5508.Peer-Reviewed Original ResearchConceptsTumor suppressorCancer Genome AtlasHuman cancersSgRNA target sitesGenome AtlasCancer Genomics ConsortiumPutative tumor suppressor geneNumerous human cancersTumor suppressor geneCRISPR screensClassical oncogenesGenomics ConsortiumSuppressor geneFunctional variantsFunctional consequencesMutational landscapeAutochthonous mouse modelSuppressorTarget siteAAV-CRISPRGenesMouse liverMultiple variantsLiver tumorigenesisVivo
2017
AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma
Chow RD, Guzman CD, Wang G, Schmidt F, Youngblood MW, Ye L, Errami Y, Dong MB, Martinez MA, Zhang S, Renauer P, Bilguvar K, Gunel M, Sharp PA, Zhang F, Platt RJ, Chen S. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nature Neuroscience 2017, 20: 1329-1341. PMID: 28805815, PMCID: PMC5614841, DOI: 10.1038/nn.4620.Peer-Reviewed Original Research
2015
Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis
Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R, Lee H, Zhang F, Sharp PA. Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis. Cell 2015, 160: 1246-1260. PMID: 25748654, PMCID: PMC4380877, DOI: 10.1016/j.cell.2015.02.038.Peer-Reviewed Original ResearchConceptsSingle guide RNAsGenome-wide CRISPR screenGenome-scale libraryCRISPR/Cas9-mediated lossLate-stage primary tumorsEffects of mutationsGenetic screenTumor growthCRISPR screensFunction screenMouse cancer cell linesCancer evolutionGene phenotypeDiverse phenotypesFunction mutationsCancer cell linesGenesCell linesPrimary screenCell poolSpecific lossPrimary tumor growthSmall poolMutationsPhenotype
2014
CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling
Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F. CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling. Cell 2014, 159: 440-455. PMID: 25263330, PMCID: PMC4265475, DOI: 10.1016/j.cell.2014.09.014.Peer-Reviewed Original ResearchCRISPR-mediated direct mutation of cancer genes in the mouse liver
Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2014, 514: 380-384. PMID: 25119044, PMCID: PMC4199937, DOI: 10.1038/nature13589.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceBeta CateninCell Transformation, NeoplasticClustered Regularly Interspaced Short Palindromic RepeatsCRISPR-Cas SystemsFemaleGenes, p53Genes, Tumor SuppressorGenetic EngineeringHepatocytesLipid MetabolismLiverLiver NeoplasmsMiceMolecular Sequence DataMutagenesisMutationOncogenesPhosphorylationProto-Oncogene Proteins c-aktPTEN PhosphohydrolaseGlobal microRNA depletion suppresses tumor angiogenesis
Chen S, Xue Y, Wu X, Le C, Bhutkar A, Bell EL, Zhang F, Langer R, Sharp PA. Global microRNA depletion suppresses tumor angiogenesis. Genes & Development 2014, 28: 1054-1067. PMID: 24788094, PMCID: PMC4035535, DOI: 10.1101/gad.239681.114.Peer-Reviewed Original ResearchConceptsUntranslated regionCRISPR/Multiplexed CRISPR/HIF transcriptional activityHypoxia-inducible factor-1Tumor angiogenesisMicroRNA-binding sitesGenome engineeringExpression profilingTranscriptional activityHypoxia responseBalance of angiogenesisHIF transcriptionMicroRNA deficiencyMicroRNAsFIH1Factor 1Angiogenesis genesDeficient angiogenesisAngiogenesisVEGF productionTranscriptionGenome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells
Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature Biotechnology 2014, 32: 670-676. PMID: 24752079, PMCID: PMC4145672, DOI: 10.1038/nbt.2889.Peer-Reviewed Original ResearchGenome editing with Cas9 in adult mice corrects a disease mutation and phenotype
Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology 2014, 32: 551-553. PMID: 24681508, PMCID: PMC4157757, DOI: 10.1038/nbt.2884.Peer-Reviewed Original Research