2022
Microbial biofilms as living photoconductors due to ultrafast electron transfer in cytochrome OmcS nanowires
Neu J, Shipps CC, Guberman-Pfeffer MJ, Shen C, Srikanth V, Spies JA, Kirchhofer ND, Yalcin SE, Brudvig GW, Batista VS, Malvankar NS. Microbial biofilms as living photoconductors due to ultrafast electron transfer in cytochrome OmcS nanowires. Nature Communications 2022, 13: 5150. PMID: 36071037, PMCID: PMC9452534, DOI: 10.1038/s41467-022-32659-5.Peer-Reviewed Original ResearchConceptsUltrafast electron transferElectron transferPhotoconductive atomic force microscopyFemtosecond transient absorption spectroscopyQuantum dynamics simulationsMicrobial electron transferAtomic force microscopyTransient absorption spectroscopyValue-added chemicalsIndividual nanowiresWhole-cell catalysisPhotoconductive materialForce microscopyCarrier densityCatalytic performanceNanowiresAbsorption spectroscopyPhotoactive proteinsEfficient productionPhotoconductorsSynthetic photosensitizersDynamics simulationsGeobacter sulfurreducensBiodegradable materialsElectronic interfaceA 300-fold conductivity increase in microbial cytochrome nanowires due to temperature-induced restructuring of hydrogen bonding networks
Dahl PJ, Yi SM, Gu Y, Acharya A, Shipps C, Neu J, O’Brien J, Morzan UN, Chaudhuri S, Guberman-Pfeffer MJ, Vu D, Yalcin SE, Batista VS, Malvankar NS. A 300-fold conductivity increase in microbial cytochrome nanowires due to temperature-induced restructuring of hydrogen bonding networks. Science Advances 2022, 8: eabm7193. PMID: 35544567, PMCID: PMC9094664, DOI: 10.1126/sciadv.abm7193.Peer-Reviewed Original ResearchTemperature-sensitive switchNanowires exhibitNanowiresSynthetic molecular wireTemperature-induced restructuringRaman spectroscopyRational engineeringCarrier lossRespiratory electronsExtracellular respirationSystematic tuningMicrometersMolecular wiresNetworkConductivity increasesNanometersLong-range conductionElectronsEngineeringSpectroscopyReduction potentialTuningProtein nanowires with tunable functionality and programmable self-assembly using sequence-controlled synthesis
Shapiro DM, Mandava G, Yalcin SE, Arranz-Gibert P, Dahl PJ, Shipps C, Gu Y, Srikanth V, Salazar-Morales AI, O’Brien J, Vanderschuren K, Vu D, Batista VS, Malvankar NS, Isaacs FJ. Protein nanowires with tunable functionality and programmable self-assembly using sequence-controlled synthesis. Nature Communications 2022, 13: 829. PMID: 35149672, PMCID: PMC8837800, DOI: 10.1038/s41467-022-28206-x.Peer-Reviewed Original ResearchConceptsProtein nanowiresElectronic functionalityChemical-based synthesisConductive protein nanowiresSequence-controlled synthesisHigh electronic conductivityGold nanoparticlesSite-specific conjugationSynthetic chemistryTunable functionalityElectronic conductivityTunable propertiesAttractive biomaterialNonstandard amino acidsSynthetic biologyNanowiresBiomaterialsProtein materialSynthesisAtomic structureMost biomaterialsIncorporation of tryptophanFunctionalityConductivityNanoparticles
2021
Structure of Geobacter pili reveals secretory rather than nanowire behaviour
Gu Y, Srikanth V, Salazar-Morales AI, Jain R, O’Brien J, Yi SM, Soni RK, Samatey FA, Yalcin SE, Malvankar NS. Structure of Geobacter pili reveals secretory rather than nanowire behaviour. Nature 2021, 597: 430-434. PMID: 34471289, PMCID: PMC9127704, DOI: 10.1038/s41586-021-03857-w.Peer-Reviewed Original ResearchConceptsExtracellular electron transferType 4 piliElectron transferProtein nanowiresCryo-electron microscopyNanowiresNanowire behaviorGeobacter piliC-terminal residuesTranslocation machineryAssembly architectureLoss of secretionMajor phylaGeobacter speciesPrevious structural analysisSurface appendagesGeobacter sulfurreducensAromatic side chainsPiliPilAΠ stackingWidespread effectsBioelectronicsMicroorganismsFilaments
2020
The blind men and the filament: Understanding structures and functions of microbial nanowires
Yalcin SE, Malvankar NS. The blind men and the filament: Understanding structures and functions of microbial nanowires. Current Opinion In Chemical Biology 2020, 59: 193-201. PMID: 33070100, PMCID: PMC7736336, DOI: 10.1016/j.cbpa.2020.08.004.Peer-Reviewed Original ResearchConceptsMicrobial nanowiresExtracellular electron transferDifferent nanowiresNanowiresPotential applicationsCryo-electron microscopyTransport electronsMultimodal functional imagingElectron transferBioelectronicsImportant environmental processesRecent discoveryPhysiological studiesOMCApplicationsMicroscopyBiofuelsSensingPhysiological needsMicrometersCrucial roleUnderstanding structureDirect evidenceThousands of papersEnergy productionElectric field stimulates production of highly conductive microbial OmcZ nanowires
Yalcin SE, O’Brien J, Gu Y, Reiss K, Yi SM, Jain R, Srikanth V, Dahl PJ, Huynh W, Vu D, Acharya A, Chaudhuri S, Varga T, Batista VS, Malvankar NS. Electric field stimulates production of highly conductive microbial OmcZ nanowires. Nature Chemical Biology 2020, 16: 1136-1142. PMID: 32807967, PMCID: PMC7502555, DOI: 10.1038/s41589-020-0623-9.Peer-Reviewed Original ResearchConceptsConductive protein nanowiresIndividual nanowiresProtein nanowiresElectronic functionalityNanowiresElectric fieldGeobacter sulfurreducens biofilmsHigh conductivityMost natural materialsHigh stiffnessElectrical signalsBidirectional interfaceElectronic systemsLiving materialsNatural materialsΠ stackingSpectroscopic studiesEnergy productionNanospectroscopyConductivityStiffnessConformational switchingΒ-sheetHeme groupSensing