2021
Infection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis
Son JH, Weiss BL, Schneider DI, Dera KM, Gstöttenmayer F, Opiro R, Echodu R, Saarman NP, Attardo GM, Onyango M, Abdalla A, Aksoy S. Infection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis. PLOS Pathogens 2021, 17: e1009539. PMID: 34529715, PMCID: PMC8478229, DOI: 10.1371/journal.ppat.1009539.Peer-Reviewed Original ResearchConceptsReproductive fitnessSpiroplasma infectionSex-biased gene expressionHigh-throughput RNA sequencingReproductive physiologyIntrauterine larval developmentMale reproductive fitnessPathogenic African trypanosomesEndosymbiotic bacteriaFly resistanceTsetse fecundityFemale spermathecaFemale fecundityRNA sequencingLarval developmentSpiroplasmaGene expressionAfrican trypanosomesReproductive tissuesReproductive homeostasisTsetse hostHuman diseasesPopulation sizeProtective phenotypeLab lines
2020
Single-cell RNA sequencing of Trypanosoma brucei from tsetse salivary glands unveils metacyclogenesis and identifies potential transmission blocking antigens
Vigneron A, O'Neill MB, Weiss BL, Savage AF, Campbell OC, Kamhawi S, Valenzuela JG, Aksoy S. Single-cell RNA sequencing of Trypanosoma brucei from tsetse salivary glands unveils metacyclogenesis and identifies potential transmission blocking antigens. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 2613-2621. PMID: 31964820, PMCID: PMC7007551, DOI: 10.1073/pnas.1914423117.Peer-Reviewed Original ResearchConceptsSingle-cell RNA sequencingRNA sequencingInfectious metacyclic formsMetacyclic parasitesMammalian host environmentFly salivary glandsMajor cell clustersClustering of cellsTsetse salivary glandsFamily proteinsDevelopmental programMammalian hostsMetacyclic cellsProtein transcriptsTrypanosoma bruceiDevelopmental processesGene expressionAfrican trypanosomesExpression profilesMolecular mechanismsSalivary glandsNew hostSurface localizationTrypanosome transmissionMetacyclogenesis
2019
Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes
Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R, Benoit JB, Bourtzis K, Caers J, Caljon G, Christensen MB, Farrow DW, Friedrich M, Hua-Van A, Jennings EC, Larkin DM, Lawson D, Lehane MJ, Lenis VP, Lowy-Gallego E, Macharia RW, Malacrida AR, Marco HG, Masiga D, Maslen GL, Matetovici I, Meisel RP, Meki I, Michalkova V, Miller WJ, Minx P, Mireji PO, Ometto L, Parker AG, Rio R, Rose C, Rosendale AJ, Rota-Stabelli O, Savini G, Schoofs L, Scolari F, Swain MT, Takáč P, Tomlinson C, Tsiamis G, Van Den Abbeele J, Vigneron A, Wang J, Warren WC, Waterhouse RM, Weirauch MT, Weiss BL, Wilson RK, Zhao X, Aksoy S. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biology 2019, 20: 187. PMID: 31477173, PMCID: PMC6721284, DOI: 10.1186/s13059-019-1768-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDNA Transposable ElementsDrosophila melanogasterFemaleGene Expression RegulationGenes, InsectGenes, X-LinkedGenome, InsectGenomicsGeographyInsect ProteinsInsect VectorsMaleMutagenesis, InsertionalPhylogenyRepetitive Sequences, Nucleic AcidSequence Homology, Amino AcidSyntenyTrypanosomaTsetse FliesWolbachiaConceptsFemale-specific gene expressionMale seminal proteinsSex-linked scaffoldsComparative genomic analysisLow evolutionary ratesVectors of humanSyntenic analysisEvolutionary ratesNovel pestsEvolutionary relationshipsBacterial symbiosisGustatory genesEvolutionary biologyHelicase activityStructural conservationDifferent habitatsSeminal proteinsGenomic analysisHost preferenceX chromosomeDisease control strategiesUnique adaptationsGene expressionAfrican trypanosomesRhodopsin geneColonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment
Weiss BL, Maltz MA, Vigneron A, Wu Y, Walter KS, O’Neill M, Wang J, Aksoy S. Colonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment. PLOS Pathogens 2019, 15: e1007470. PMID: 30817773, PMCID: PMC6394900, DOI: 10.1371/journal.ppat.1007470.Peer-Reviewed Original ResearchConceptsRefractory phenotypeEnormous socio-economic burdenWild-type counterpartsInfection establishmentSocio-economic burdenMidgut environmentEntomopathogenic Serratia marcescensEndemic regionsPathogenic trypanosomesInfectionStable infectionAdverse effectsAnimal African trypanosomiasesVector competenceGutCurrent disease control strategiesSaharan AfricaDisease control strategiesSurvivalSerratia marcescensTsetse gutExogenous bacteriumFly survivalNovel strategyPhenotype
2017
Unravelling the relationship between the tsetse fly and its obligate symbiont Wigglesworthia: transcriptomic and metabolomic landscapes reveal highly integrated physiological networks
Bing X, Attardo GM, Vigneron A, Aksoy E, Scolari F, Malacrida A, Weiss BL, Aksoy S. Unravelling the relationship between the tsetse fly and its obligate symbiont Wigglesworthia: transcriptomic and metabolomic landscapes reveal highly integrated physiological networks. Proceedings Of The Royal Society B 2017, 284: 20170360. PMID: 28659447, PMCID: PMC5489720, DOI: 10.1098/rspb.2017.0360.Peer-Reviewed Original ResearchConceptsPeptidoglycan recognition proteinsAfrican trypanosome parasitesTsetse fliesAmino acid metabolismWigglesworthia glossinidiaMultiple metabolic pathwaysObligate endosymbiontsMolecular chaperonesTransport machineryVertebrate bloodMetabolomic landscapeRecognition proteinsSeq analysisSymbiotic dialogueNucleotide biosynthesisAdenosyl methionineBiological functionsSpecialized cellsTsetse survivalTrypanosome parasitesEssential cofactorMetabolic pathwaysNew biological targetsAcid metabolismPhysiological networks
2014
Genome Sequence of the Tsetse Fly (Glossina morsitans): Vector of African Trypanosomiasis
Initiative I, Attardo G, Abila P, Auma J, Baumann A, Benoit J, Brelsfoard C, Ribeiro J, Cotton J, Pham D, Darby A, Van Den Abbeele J, Denlinger D, Field L, Nyanjom S, Gaunt M, Geiser D, Gomulski L, Haines L, Hansen I, Jones J, Kibet C, Kinyua J, Larkin D, Lehane M, Rio R, Macdonald S, Macharia R, Malacrida A, Marco H, Marucha K, Masiga D, Meuti M, Mireji P, Obiero G, Koekemoer J, Okoro C, Omedo I, Osamor V, Balyeidhusa A, Peyton J, Price D, Quail M, Ramphul U, Rawlings N, Riehle M, Robertson H, Sanders M, Scott M, Dashti Z, Snyder A, Srivastava T, Stanley E, Swain M, Hughes D, Tarone A, Taylor T, Telleria E, Thomas G, Walshe D, Wilson R, Winzerling J, Acosta-Serrano A, Aksoy S, Arensburger P, Aslett M, Bateta R, Benkahla A, Berriman M, Bourtzis K, Caers J, Caljon G, Christoffels A, Falchetto M, Friedrich M, Fu S, Gäde G, Githinji G, Gregory R, Hall N, Harkins G, Hattori M, Hertz-Fowler C, Hide W, Hu W, Imanishi T, Inoue N, Jonas M, Kawahara Y, Koffi M, Kruger A, Lawson D, Lehane S, Lehväslaiho H, Luiz T, Makgamathe M, Malele I, Manangwa O, Manga L, Megy K, Michalkova V, Mpondo F, Mramba F, Msangi A, Mulder N, Murilla G, Mwangi S, Okedi L, Ommeh S, Ooi C, Ouma J, Panji S, Ravel S, Rose C, Sakate R, Schoofs L, Scolari F, Sharma V, Sim C, Siwo G, Solano P, Stephens D, Suzuki Y, Sze S, Touré Y, Toyoda A, Tsiamis G, Tu Z, Wamalwa M, Wamwiri F, Wang J, Warren W, Watanabe J, Weiss B, Willis J, Wincker P, Zhang Q, Zhou J. Genome Sequence of the Tsetse Fly (Glossina morsitans): Vector of African Trypanosomiasis. Science 2014, 344: 380-386. PMID: 24763584, PMCID: PMC4077534, DOI: 10.1126/science.1249656.Peer-Reviewed Original ResearchConceptsGenome sequenceLactation-specific proteinsProtein-encoding genesBacterial genome sequencesPathogen recognition proteinsTsetse fliesMicrobial symbiosesTsetse biologyViviparous reproductionGenome dataRecognition proteinsSole vectorsChromosomal integrationDisease vectorsAfrican trypanosomiasisGenomeGenesFliesProteinSequenceMultiple aspectsHuman African trypanosomiasisImportant insightsMultiple discoveriesSymbioses
2012
Obligate Symbionts Activate Immune System Development in the Tsetse Fly
Weiss BL, Maltz M, Aksoy S. Obligate Symbionts Activate Immune System Development in the Tsetse Fly. The Journal Of Immunology 2012, 188: 3395-3403. PMID: 22368278, PMCID: PMC3311772, DOI: 10.4049/jimmunol.1103691.Peer-Reviewed Original ResearchConceptsSymbiotic bacteriaImmune system developmentNovel evolutionary adaptationImmunity-related genesObligate symbiontsSymbiotic microbesObligate mutualistsViviparous modeProper immune system functionEvolutionary adaptationPhagocytic hemocytesMolecular mechanismsCell extractsMolecular componentsSusceptible phenotypeNonpathogenic Escherichia coliEscherichia coliTsetse fliesImmune systemFliesAtypical expressionHemocytesImmune system functionPhenotypeTsetseMolecular characterization of Ephestia kuehniella (Lepidoptera: Pyralidae) transferrin and its response to parasitoid Venturia canescens (Hymenoptera: Ichneumonidae Gravenhorst)
Guz N, Kilincer N, Aksoy S. Molecular characterization of Ephestia kuehniella (Lepidoptera: Pyralidae) transferrin and its response to parasitoid Venturia canescens (Hymenoptera: Ichneumonidae Gravenhorst). Insect Molecular Biology 2012, 21: 139-147. PMID: 22229520, DOI: 10.1111/j.1365-2583.2011.01129.x.Peer-Reviewed Original ResearchConceptsInsect transferrinsDeduced amino acid sequenceFull-length cDNAPupal developmental stagesAmino acid sequenceLast larval instarNorthern blot analysisSignificant homologyChilo suppressalisFat bodyAcid sequenceMediterranean flour mothBombyx moriPlutella xylostellaSpodoptera lituraMolecular characterizationLarval instarsMolecular massDevelopmental stagesGalleria mellonellaChoristoneura fumiferanaAmino acidsOvary tissuesVenturia canescensIron-binding protein transferrin
2011
Wolbachia Symbiont Infections Induce Strong Cytoplasmic Incompatibility in the Tsetse Fly Glossina morsitans
Alam U, Medlock J, Brelsfoard C, Pais R, Lohs C, Balmand S, Carnogursky J, Heddi A, Takac P, Galvani A, Aksoy S. Wolbachia Symbiont Infections Induce Strong Cytoplasmic Incompatibility in the Tsetse Fly Glossina morsitans. PLOS Pathogens 2011, 7: e1002415. PMID: 22174680, PMCID: PMC3234226, DOI: 10.1371/journal.ppat.1002415.Peer-Reviewed Original Research
2009
Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission
Wang J, Wu Y, Yang G, Aksoy S. Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proceedings Of The National Academy Of Sciences Of The United States Of America 2009, 106: 12133-12138. PMID: 19587241, PMCID: PMC2715537, DOI: 10.1073/pnas.0901226106.Peer-Reviewed Original ResearchConceptsImmune deficiencyPGRP-LBHost immune responsePeptidoglycan recognition proteinsAnti-protozoal activityTsetse's abilityImmune responseInfection susceptibilityHost immunityExpression correlatesNormal adultsInfectionHost susceptibilityAntimicrobial peptidesParasitized adultsTrypanosome infectionAdult tsetseRecognition proteinsLimited exposureAdultsForeign microbesRNA interferencePathway functionActivationSusceptibility
2001
Molecular characterization of two serine proteases expressed in gut tissue of the African trypanosome vector, Glossina morsitans morsitans
Yan J, Cheng Q, Li C, Aksoy S. Molecular characterization of two serine proteases expressed in gut tissue of the African trypanosome vector, Glossina morsitans morsitans. Insect Molecular Biology 2001, 10: 47-56. PMID: 11240636, DOI: 10.1046/j.1365-2583.2001.00232.x.Peer-Reviewed Original ResearchConceptsSerine proteasesSerine protease-encoding genePutative mature proteinHydrophobic signal peptide sequenceInvertebrate serine proteasesProtease-encoding genesPost-transcriptional levelAmino acid mature peptideGut tissueSer catalytic triadSignal peptide sequenceRegulation of expressionPattern of expressionSerine protease 1Insect gutMature proteinVector insectsDeduced peptideChymotrypsin-like proteaseTsetse genomeSpecific residuesCatalytic triadAfrican trypanosomesMature peptidePathogen establishment
2000
A family of genes with growth factor and adenosine deaminase similarity are preferentially expressed in the salivary glands of Glossina m. morsitans
Li S, Aksoy S. A family of genes with growth factor and adenosine deaminase similarity are preferentially expressed in the salivary glands of Glossina m. morsitans. Gene 2000, 252: 83-93. PMID: 10903440, DOI: 10.1016/s0378-1119(00)00226-2.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine DeaminaseAmino Acid SequenceAnimalsBase SequenceBlotting, NorthernBlotting, SouthernDNADNA, ComplementaryFemaleGene Expression RegulationGene Expression Regulation, DevelopmentalGrowth SubstancesMaleMolecular Sequence DataRNA, MessengerSalivaSalivary GlandsSequence Analysis, DNASpecies SpecificityTissue DistributionTsetse FliesConceptsOpen reading frameFemale adult fliesDeduced protein sequenceSignal peptide characteristicDifferent fly tissuesFamily of genesFull-length cDNAAmino acid identityLarval developmental stagesRegulation of expressionN-terminal regionGrowth factorAmino acid residuesTissues of adultAnalysis of proteinsGenomic arrangementPutative proteinFly tissuesSarcophaga peregrinaAcid identityHydrophobic sequenceCDNA libraryReading frameAdult fliesProtein sequences
1999
Sandflies (Diptera: Psychodidae) Associated with Epidemic Cutaneous Leishmaniasis in Sanliurfa, Turkey
Alptekin D, Kasap M, Luleyap U, Kasap H, Aksoy S, Wilson M. Sandflies (Diptera: Psychodidae) Associated with Epidemic Cutaneous Leishmaniasis in Sanliurfa, Turkey. Journal Of Medical Entomology 1999, 36: 277-281. PMID: 10337097, DOI: 10.1093/jmedent/36.3.277.Peer-Reviewed Original Research
1998
Tsetse thrombin inhibitor: Bloodmeal-induced expression of an anticoagulant in salivary glands and gut tissue of Glossina morsitans morsitans
Cappello M, Li S, Chen X, Li C, Harrison L, Narashimhan S, Beard C, Aksoy S. Tsetse thrombin inhibitor: Bloodmeal-induced expression of an anticoagulant in salivary glands and gut tissue of Glossina morsitans morsitans. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 14290-14295. PMID: 9826693, PMCID: PMC24366, DOI: 10.1073/pnas.95.24.14290.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAnticoagulantsAntithrombin ProteinsAntithrombinsBase SequenceBloodCloning, MolecularDigestive SystemDNA, ComplementaryEatingEscherichia coliFemaleGene Expression RegulationInsect ProteinsMaleMolecular Sequence DataPupaRecombinant ProteinsRNA, MessengerSalivary GlandsThrombinTranscription, GeneticTsetse FliesConceptsTsetse thrombin inhibitorPutative secretory signal peptideNative proteinGlossina morsitans morsitansFull-length cDNADegenerate oligonucleotide probeSecretory signal peptideSalivary gland cDNA libraryLack of homologyMorsitans morsitansUntranslated segmentSignal peptideInhibitor geneCDNA librarySingle copyTsetse genomeAdult tsetse fliesFamily of moleculesSegment codesEscherichia coliOptimal inhibitory activityOligonucleotide probesTsetse fliesSalivary glandsGut tissue
1993
Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues
O'NEILL S, GOODING R, AKSOY S. Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Medical And Veterinary Entomology 1993, 7: 377-383. PMID: 8268495, DOI: 10.1111/j.1365-2915.1993.tb00709.x.Peer-Reviewed Original ResearchConceptsIntracellular bacterial symbiontsBlood-feeding insectsDNA oligonucleotide primersBacterial symbiontsSymbiotic microorganismsAlpha subdivisionSymbiotic bacteriaGamma subdivisionGenus WolbachiaGlossina speciesPolymerase chain reactionOvary tissuesOligonucleotide primersTsetse fliesMidgutSpeciesSymbiontsInsectsWolbachiaProteobacteriaSubspeciesChain reactionFliesMicroorganismsTissue