2023
Lipid metabolism dysfunction following symbiont elimination is linked to altered Kennedy pathway homeostasis
Attardo G, Benoit J, Michalkova V, Kondragunta A, Baumann A, Weiss B, Malacrida A, Scolari F, Aksoy S. Lipid metabolism dysfunction following symbiont elimination is linked to altered Kennedy pathway homeostasis. IScience 2023, 26: 107108. PMID: 37534171, PMCID: PMC10391724, DOI: 10.1016/j.isci.2023.107108.Peer-Reviewed Original ResearchKennedy pathwayObligate endosymbiotic bacteriaViviparous tsetse flyLipid metabolismEarly developmental stagesInsect reproductionEndosymbiotic bacteriaSymbiotic bacteriaLipid biosynthesisPathway homeostasisSymbiont eliminationFunctional validationExperimental removalPhosphatidylcholine biosynthesisDevelopmental stagesProper functionTsetse fliesBiosynthesisLipid metabolism dysfunctionImpaired lipid metabolismMetabolismBacteriaPathwayMetabolism dysfunctionSymbionts
2015
Sodalis
Dale C, Aksoy S, Welburn S, Maudlin I, Oren A. Sodalis. 2015, 1-3. DOI: 10.1002/9781118960608.gbm01169.Peer-Reviewed Original Research
2012
Obligate Symbionts Activate Immune System Development in the Tsetse Fly
Weiss BL, Maltz M, Aksoy S. Obligate Symbionts Activate Immune System Development in the Tsetse Fly. The Journal Of Immunology 2012, 188: 3395-3403. PMID: 22368278, PMCID: PMC3311772, DOI: 10.4049/jimmunol.1103691.Peer-Reviewed Original ResearchConceptsSymbiotic bacteriaImmune system developmentNovel evolutionary adaptationImmunity-related genesObligate symbiontsSymbiotic microbesObligate mutualistsViviparous modeProper immune system functionEvolutionary adaptationPhagocytic hemocytesMolecular mechanismsCell extractsMolecular componentsSusceptible phenotypeNonpathogenic Escherichia coliEscherichia coliTsetse fliesImmune systemFliesAtypical expressionHemocytesImmune system functionPhenotypeTsetse
2002
Tsetse Vector Based Strategies for Control of African Try Panosomiasis
Aksoy S. Tsetse Vector Based Strategies for Control of African Try Panosomiasis. 2002, 1: 39-49. DOI: 10.1007/0-306-46894-8_4.Peer-Reviewed Original ResearchMolecular genetic approachesBacterial symbiontsRecombinant DNA technologySymbiotic bacteriaCytoplasmic incompatibilityWolbachia symbiontsPotential genesGenetic approachesParasite biologyForeign genesSusceptible counterpartsDNA technologySymbiontsGenesSame tissueInsectsDisease transmissionOrganismsBiologyTrypanosomesBacteriaExpressionNew strategyTsetse
1997
Prevention of insect-borne disease: An approach using transgenic symbiotic bacteria
Durvasula R, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield R, Richards F, Beard C. Prevention of insect-borne disease: An approach using transgenic symbiotic bacteria. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 3274-3278. PMID: 9096383, PMCID: PMC20359, DOI: 10.1073/pnas.94.7.3274.Peer-Reviewed Original ResearchConceptsSymbiotic bacteriaDisease-transmitting insectsChagas disease vectorsSymbiont acquisitionTransgenic bacteriaInsect-borne diseaseR. prolixusDisease vectorsCertain arthropodsRhodnius prolixusT. cruziTrypanosoma cruziCecropin AExpression of moleculesInsectsBacteriaPowerful approachProlixusCruziExpressionEndosymbiontsArthropodsCecropinAntiparasitic activityParasites
1993
Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues
O'NEILL S, GOODING R, AKSOY S. Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Medical And Veterinary Entomology 1993, 7: 377-383. PMID: 8268495, DOI: 10.1111/j.1365-2915.1993.tb00709.x.Peer-Reviewed Original ResearchConceptsIntracellular bacterial symbiontsBlood-feeding insectsDNA oligonucleotide primersBacterial symbiontsSymbiotic microorganismsAlpha subdivisionSymbiotic bacteriaGamma subdivisionGenus WolbachiaGlossina speciesPolymerase chain reactionOvary tissuesOligonucleotide primersTsetse fliesMidgutSpeciesSymbiontsInsectsWolbachiaProteobacteriaSubspeciesChain reactionFliesMicroorganismsTissue