Featured Publications
Using Adversarial Images to Assess the Robustness of Deep Learning Models Trained on Diagnostic Images in Oncology
Joel MZ, Umrao S, Chang E, Choi R, Yang DX, Duncan JS, Omuro A, Herbst R, Krumholz HM, Aneja S. Using Adversarial Images to Assess the Robustness of Deep Learning Models Trained on Diagnostic Images in Oncology. JCO Clinical Cancer Informatics 2022, 6: e2100170. PMID: 35271304, PMCID: PMC8932490, DOI: 10.1200/cci.21.00170.Peer-Reviewed Original Research
2023
Bladder Cancer Radiation Oncology of the Future: Prognostic Modelling, Radiomics, and Treatment Planning With Artificial Intelligence
Moore N, McWilliam A, Aneja S. Bladder Cancer Radiation Oncology of the Future: Prognostic Modelling, Radiomics, and Treatment Planning With Artificial Intelligence. Seminars In Radiation Oncology 2023, 33: 70-75. PMID: 36517196, DOI: 10.1016/j.semradonc.2022.10.009.Peer-Reviewed Original ResearchConceptsArtificial intelligenceMachine learningReliability of algorithmAccurate predictive modelsEfficient creationIntelligenceBladder cancer patientsRadiation oncology patientsAlgorithmPrognostic modellingRoutine clinical useClinical outcomesOncology patientsClinical recordsCancer patientsBladder cancerPredictive modelTreatment planClinical useMultiple treatment plansClinical implementationNext stepRadiation oncologyTreatment planningInterpretability