Featured Publications
Structure of a bacterial OapB protein with its OLE RNA target gives insights into the architecture of the OLE ribonucleoprotein complex
Yang Y, Harris KA, Widner DL, Breaker RR. Structure of a bacterial OapB protein with its OLE RNA target gives insights into the architecture of the OLE ribonucleoprotein complex. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2020393118. PMID: 33619097, PMCID: PMC7936274, DOI: 10.1073/pnas.2020393118.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBacillusBacterial ProteinsBase SequenceBinding SitesCloning, MolecularCrystallography, X-RayEscherichia coliGene ExpressionGene Expression Regulation, BacterialGenetic VectorsMolecular Docking SimulationNucleic Acid ConformationProtein BindingProtein Conformation, alpha-HelicalProtein Conformation, beta-StrandProtein Interaction Domains and MotifsRecombinant ProteinsRibonucleoproteinsRNA, BacterialRNA, UntranslatedConceptsOLE RNARNP complexesBiological functionsBacterial noncoding RNAsRNA-binding surfaceProtein-RNA interfacesHigh-resolution structuresUnique structural elementsKOW motifProtein partnersHigh conservationRibonucleoprotein complexesRNA classesRNA interactionsNoncoding RNAsBacterial responseOapBRNA targetsRNA fragmentsAtomic detailRNAProtein BMolecular contactsProtein AStructural features
2022
Ornate, large, extremophilic (OLE) RNA forms a kink turn necessary for OapC protein recognition and RNA function
Lyon S, Harris K, Odzer N, Wilkins S, Breaker R. Ornate, large, extremophilic (OLE) RNA forms a kink turn necessary for OapC protein recognition and RNA function. Journal Of Biological Chemistry 2022, 298: 102674. PMID: 36336078, PMCID: PMC9723947, DOI: 10.1016/j.jbc.2022.102674.Peer-Reviewed Original ResearchConceptsOLE RNARNP complexesRNA-protein binding assaysPrecise biochemical functionRNA structural motifsInability of cellsNatural binding sitesRibonucleoprotein complexesRNA functionBiochemical functionsExhibit phenotypesBacterial proteinsK-turnKink turnBacillus haloduransDisruptive mutationsSame proteinBacterial speciesProtein recognitionAnaerobic bacterial speciesFunctional roleSecondary structureRNAProteinOapB
2001
Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes.
Soukup G, DeRose E, Koizumi M, Breaker R. Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. RNA 2001, 7: 524-36. PMID: 11345431, PMCID: PMC1370106, DOI: 10.1017/s1355838201002175.Peer-Reviewed Original ResearchConceptsEffector-binding domainAllosteric ribozymesRandom mutagenesisMolecular switchLigand-binding RNAsRNA molecular switchCyclic nucleotide monophosphatesModular rational designSecondary structure organizationSpecific effector moleculesGenetic switchDirect mutational analysisNucleotide covariationsCatalytic domainPhylogeny dataMutational analysisModular engineeringCatalytic moduleNucleic acid structuresNucleotide monophosphatesEffector moleculesAffinity maturationRibozymeMutagenesisHammerhead ribozymeCooperative binding of effectors by an allosteric ribozyme
Jose A, Soukup G, Breaker R. Cooperative binding of effectors by an allosteric ribozyme. Nucleic Acids Research 2001, 29: 1631-1637. PMID: 11266567, PMCID: PMC31269, DOI: 10.1093/nar/29.7.1631.Peer-Reviewed Original ResearchConceptsAllosteric ribozymesCooperative bindingModular rational designAbsence of effectorsAllosteric proteinsRNA modulesRNA structureMolecular switchAllosteric effectorsFirst bindsFunctional complexityEffectorsDifferent effectorsInduces formationFMNStructural studiesRNARibozymeRibozyme constructsBindingRational designProteinBindsSitesConcert
2000
Tech.Sight. Molecular biology. Making catalytic DNAs.
Breaker R. Tech.Sight. Molecular biology. Making catalytic DNAs. Science 2000, 290: 2095-6. PMID: 11187837, DOI: 10.1126/science.290.5499.2095.Peer-Reviewed Original ResearchMolecular Recognition of cAMP by an RNA Aptamer †
Koizumi M, Breaker R. Molecular Recognition of cAMP by an RNA Aptamer †. Biochemistry 2000, 39: 8983-8992. PMID: 10913311, DOI: 10.1021/bi000149n.Peer-Reviewed Original ResearchAltering molecular recognition of RNA aptamers by allosteric selection11Edited by D. E. Draper
Soukup G, Emilsson G, Breaker R. Altering molecular recognition of RNA aptamers by allosteric selection11Edited by D. E. Draper. Journal Of Molecular Biology 2000, 298: 623-632. PMID: 10788325, DOI: 10.1006/jmbi.2000.3704.Peer-Reviewed Original Research
1999
In vitro selection of deoxyribozymes with DNA capping activity.
Li Y, Liu Y, Breaker R. In vitro selection of deoxyribozymes with DNA capping activity. Nucleic Acids Symposium Series 1999, 42: 237-8. PMID: 10780467, DOI: 10.1093/nass/42.1.237.Peer-Reviewed Original Research
1998
Mechanism for allosteric inhibition of an ATP-sensitive ribozyme
Tang J, Breaker R. Mechanism for allosteric inhibition of an ATP-sensitive ribozyme. Nucleic Acids Research 1998, 26: 4214-4221. PMID: 9722642, PMCID: PMC147823, DOI: 10.1093/nar/26.18.4214.Peer-Reviewed Original ResearchConceptsAllosteric ribozymesModular rational designFunctional modulationEffector moleculesSelf-cleaving ribozymesFunction of ribozymesSmall effector moleculesPresence of ATPAbsence of ATPAptamer domainStructural basisLigand bindingAllosteric inhibitionRibozyme domainPossible mechanismTertiary structureConformational changesRibozyme
1997
Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection.
Tang J, Breaker R. Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection. RNA 1997, 3: 914-25. PMID: 9257650, PMCID: PMC1369536.Peer-Reviewed Original ResearchConceptsConsensus sequenceATP-binding RNA aptamerCatalytic fitnessHammerhead ribozymeAbsence of ATPRNA poolAllosteric ribozymesVitro SelectionRNA aptamersCatalytic functionSequence variantsAllosteric interactionsCombinatorial poolsRibozymeTranscriptionATPRNACatalytic rateSequenceHammerhead domainRibozyme constructsFitnessAllosteric delayPoolSimilar strategies