2012
c-Met is a prognostic marker and potential therapeutic target in clear cell renal cell carcinoma
Gibney GT, Aziz SA, Camp RL, Conrad P, Schwartz BE, Chen CR, Kelly WK, Kluger HM. c-Met is a prognostic marker and potential therapeutic target in clear cell renal cell carcinoma. Annals Of Oncology 2012, 24: 343-349. PMID: 23022995, PMCID: PMC3551486, DOI: 10.1093/annonc/mds463.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAntineoplastic AgentsBiomarkers, TumorCarcinoma, Renal CellCell Line, TumorCell ProliferationFemaleHepatocyte Growth FactorHumansIndolesKidney NeoplasmsMaleMiddle AgedPiperazinesPrognosisProto-Oncogene Proteins c-metPyrrolidinonesQuinolinesSulfonamidesTissue Array AnalysisConceptsRenal cell carcinomaClear cell renal cell carcinomaC-Met expressionCell renal cell carcinomaHigh c-Met expressionAdjacent normal renal tissuesNormal renal tissueARQ 197Cell carcinomaRenal tissueRCC tumorsTissue microarrayWorse disease-specific survivalC-MetClear cell RCC cell linesC-Met protein expressionCell linesPoor pathologic featuresCell subset analysisDisease-specific survivalPapillary renal cell carcinomaRange of malignanciesC-Met pathwayC-Met inhibitionPotential therapeutic target
2007
Antibody validation by quantitative analysis of protein expression using expression of Met in breast cancer as a model
Pozner-Moulis S, Cregger M, Camp RL, Rimm DL. Antibody validation by quantitative analysis of protein expression using expression of Met in breast cancer as a model. Laboratory Investigation 2007, 87: 251-260. PMID: 17260003, DOI: 10.1038/labinvest.3700515.Peer-Reviewed Original ResearchConceptsExpression of METPrognostic valueBreast cancerProtein expressionShorter disease-specific survivalDisease-specific survivalInvasive breast cancerHepatocyte growth factor receptorGrowth factor receptorNeck carcinomaAssessment of reproducibilityIntracellular domainTissue microarrayPotential biomarkersCell line controlAntibody validationNuclear MetCancerFactor receptorAntibodiesMetSMet receptorVariable resultsReceptorsCompartmental analysis
2004
β‐Catenin and p53 analyses of a breast carcinoma tissue microarray
Chung GG, Zerkowski MP, Ocal IT, Dolled‐Filhart M, Kang JY, Psyrri A, Camp RL, Rimm DL. β‐Catenin and p53 analyses of a breast carcinoma tissue microarray. Cancer 2004, 100: 2084-2092. PMID: 15139049, DOI: 10.1002/cncr.20232.Peer-Reviewed Original Research
2003
Tissue microarray‐based studies of patients with lymph node negative breast carcinoma show that met expression is associated with worse outcome but is not correlated with epidermal growth factor family receptors
Ocal I, Dolled‐Filhart M, D'Aquila TG, Camp RL, Rimm DL. Tissue microarray‐based studies of patients with lymph node negative breast carcinoma show that met expression is associated with worse outcome but is not correlated with epidermal growth factor family receptors. Cancer 2003, 97: 1841-1848. PMID: 12673709, DOI: 10.1002/cncr.11335.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaBiomarkers, TumorBreast NeoplasmsCohort StudiesErbB ReceptorsFemaleGene Expression Regulation, NeoplasticHepatocyte Growth FactorHumansImmunoenzyme TechniquesKi-67 AntigenLymph NodesLymphatic MetastasisNeoplasm StagingPrognosisProto-Oncogene Proteins c-metReceptor, ErbB-2Receptors, EstrogenReceptors, Fibroblast Growth FactorReceptors, ProgesteroneSurvival RateConceptsLymph node negative breast carcinomaEpidermal growth factor receptorNode-negative breast carcinomaNegative breast carcinomaHER-2Breast carcinomaSet of patientsReceptor tyrosine kinasesGrowth factor receptorReceptor statusTumor sizeWorse outcomesEpidermal growth factor family receptorsProgesterone receptor expression levelsTissue microarray-based studyFamily receptorsHormone receptor statusFactor receptorGroup of patientsIndependent predictive valueExpression levelsReceptor expression levelsUnique staining patternStudy cohortTissue microarray technologyTissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer.
Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB, Rimm DL, Camp RL. Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Research 2003, 63: 1101-5. PMID: 12615728.Peer-Reviewed Original ResearchConceptsHepatocyte growth factor activator inhibitor-1Breast carcinomaSeries of proteasesNode-negative breast cancerHigh-level expressionNode-negative breast carcinomaHGF/MET pathwayIndependent prognostic valueBreast cancer progressionPoor patient outcomesTissue microarray analysisPathway componentsMicroarray analysisExtracellular domainActivator inhibitor-1Expression of HGFOverexpression of METMet receptorHepatocyte growth factorCancer progressionMatriptasePrognostic valueBreast markersPatient followPatient outcomes
1999
Met expression is associated with poor outcome in patients with axillary lymph node negative breast carcinoma
Camp R, Rimm E, Rimm D. Met expression is associated with poor outcome in patients with axillary lymph node negative breast carcinoma. Cancer 1999, 86: 2259-2265. PMID: 10590366, DOI: 10.1002/(sici)1097-0142(19991201)86:11<2259::aid-cncr13>3.0.co;2-2.Peer-Reviewed Original ResearchConceptsAxillary lymph node negative breast carcinomaLymph node negative breast carcinomaExpression of METNode-negative breast carcinomaNegative breast carcinomaBreast carcinomaMET expressionMetastatic diseaseRelative riskNegative invasive ductal carcinomaLow Met expressionMET-negative patientsIndependent predictive valueIndependent prognostic markerUseful prognostic indicatorInvasive ductal carcinomaStandard immunoperoxidase techniqueHigh MET expressionHepatocyte growth factorActivation of METAxillary lymphNegative patientsPatient agePrognostic factorsAggressive disease