2024
Ectopic reconstitution of a spine-apparatus-like structure provides insight into mechanisms underlying its formation
Falahati H, Wu Y, Fang M, De Camilli P. Ectopic reconstitution of a spine-apparatus-like structure provides insight into mechanisms underlying its formation. Current Biology 2024 PMID: 39626668, DOI: 10.1016/j.cub.2024.11.010.Peer-Reviewed Original ResearchEndoplasmic reticulumSpine apparatusActin bundlesEndomembrane networkER sheetsConserved regionProtein synaptopodinCisternal organelleNon-neuronal cellsER cisternsOrganellesSynaptopodinProteinNeuronal dendritesNeuronal spinesAxon initial segmentFindings shed lightBiogenesisActinProtein matrixNarrow lumenReticulumMammalsInitial segmentMechanismVPS13B is localized at the interface between Golgi cisternae and is a functional partner of FAM177A1
Ugur B, Schueder F, Shin J, Hanna M, Wu Y, Leonzino M, Su M, McAdow A, Wilson C, Postlethwait J, Solnica-Krezel L, Bewersdorf J, De Camilli P. VPS13B is localized at the interface between Golgi cisternae and is a functional partner of FAM177A1. Journal Of Cell Biology 2024, 223: e202311189. PMID: 39331042, PMCID: PMC11451052, DOI: 10.1083/jcb.202311189.Peer-Reviewed Original ResearchConceptsLipid transportGolgi complex proteinGolgi subcompartmentsGolgi membranesGolgi cisternaeProtein familyFunctional partnersGolgi complexKO cellsComplex proteinsFAM177A1GolgiVPS13BAdjacent membranesMutationsProteinCohen syndromeLipidOrthologsInteractorsBrefeldinMembraneOrganellesSubcompartmentsDevelopmental disorders
2023
ATG9 vesicles comprise the seed membrane of mammalian autophagosomes
Olivas T, Wu Y, Yu S, Luan L, Choi P, Guinn E, Nag S, De Camilli P, Gupta K, Melia T. ATG9 vesicles comprise the seed membrane of mammalian autophagosomes. Journal Of Cell Biology 2023, 222: e202208088. PMID: 37115958, PMCID: PMC10148236, DOI: 10.1083/jcb.202208088.Peer-Reviewed Original ResearchConceptsAtg9 vesiclesMammalian autophagosomesStyrene maleic acid lipid particlesLipid scramblase activityLC3-IIAutophagosomes formAutophagosome membraneMature autophagosomesScramblase activityAutophagosome formationAtg9Lipid transportMembrane growthAutophagosomesNanoscale organizationProtein-mediated transferProteinMembrane surface areaOrganellesVesiclesSeed membraneMembraneLipid particlesLipidsDifferent stages
2022
SHIP164 is a chorein motif lipid transfer protein that controls endosome–Golgi membrane traffic
Hanna MG, Suen PH, Wu Y, Reinisch KM, De Camilli P. SHIP164 is a chorein motif lipid transfer protein that controls endosome–Golgi membrane traffic. Journal Of Cell Biology 2022, 221: e202111018. PMID: 35499567, PMCID: PMC9067936, DOI: 10.1083/jcb.202111018.Peer-Reviewed Original ResearchConceptsMannose-6-phosphate receptorCation-independent mannose-6-phosphate receptorMembrane contact sitesEarly endocytic pathwayGolgi membrane trafficLipid transfer proteinLipid transfer propertiesProtein-lipid ratioMembrane cargoMembrane trafficEndocytic membranesVesicular trafficRetrograde trafficEndocytic pathwayFunctional characterizationContact sitesMembranous organellesGolgi complexVesicle clustersCellular membranesTransfer proteinProteinLipid compositionOrganellesMembrane
2021
Insights into VPS13 properties and function reveal a new mechanism of eukaryotic lipid transport
Leonzino M, Reinisch KM, De Camilli P. Insights into VPS13 properties and function reveal a new mechanism of eukaryotic lipid transport. Biochimica Et Biophysica Acta (BBA) - Molecular And Cell Biology Of Lipids 2021, 1866: 159003. PMID: 34216812, PMCID: PMC8325632, DOI: 10.1016/j.bbalip.2021.159003.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutophagosomesAutophagy-Related ProteinsCryoelectron MicroscopyDisease Models, AnimalEukaryotic CellsHeredodegenerative Disorders, Nervous SystemHumansHydrophobic and Hydrophilic InteractionsLipid BilayersLipid MetabolismMitochondrial MembranesMutationProtein DomainsStructure-Activity RelationshipVesicular Transport ProteinsYeastsConceptsLipid transportMembrane contact sitesDomain protein familyOccurrence of proteinsVPS13 proteinsEukaryotic cellsNumerous proteinsProtein familyIntracellular membranesProtein bridgeHydrophobic grooveContact sitesMembrane growthLipid transferBilayer lipidsNovel mechanismVps13New mechanismProteinLipidsAtg2OrganellesAdjacent bilayersDiscoveryMechanism
2020
Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells
Benedetti L, Marvin JS, Falahati H, Guillén-Samander A, Looger LL, De Camilli P. Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells. ELife 2020, 9: e63230. PMID: 33174843, PMCID: PMC7735757, DOI: 10.7554/elife.63230.Peer-Reviewed Original ResearchConceptsProtein fusion partnersSmall subcellular volumesSubcellular optogeneticsOrganelle contactsHomodimerization interfaceProtein modulesMammalian cellsBiological processesPhysiological processesSubcellular organellesLow temperature preincubationSimultaneous photoactivationFusion partnerCell preincubationWhole cellsSubcellular volumesConcatemerizationSpatial controlSpatiotemporal confinementCellsNeurosporaOrganellesHeterodimersVIVIDProteinRole of VPS13, a protein with similarity to ATG2, in physiology and disease
Ugur B, Hancock-Cerutti W, Leonzino M, De Camilli P. Role of VPS13, a protein with similarity to ATG2, in physiology and disease. Current Opinion In Genetics & Development 2020, 65: 61-68. PMID: 32563856, PMCID: PMC7746581, DOI: 10.1016/j.gde.2020.05.027.Peer-Reviewed Original ResearchConceptsAutophagy protein ATG2N-terminal halfVPS13 proteinsMolecular functionsCellular processesFamily proteinsVps13Contact sitesAtg2Intracellular organellesFunctional studiesNovel mechanismProteinSimilar roleHydrophobic channelStructural studiesNeurodegenerative disordersPhysiologyDirect transferOrganellesSimilarityMutationsRoleLipidsBilayers
2018
VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites
Kumar N, Leonzino M, Hancock-Cerutti W, Horenkamp FA, Li P, Lees JA, Wheeler H, Reinisch KM, De Camilli P. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. Journal Of Cell Biology 2018, 217: 3625-3639. PMID: 30093493, PMCID: PMC6168267, DOI: 10.1083/jcb.201807019.Peer-Reviewed Original ResearchConceptsN-terminal portionAutophagy protein ATG2Membrane lipid homeostasisLate endosomes/lysosomesSecondary structure similarityLipid transport proteinsER contact sitesEndosomes/lysosomesHuman VPS13AVPS13 genesVps13Implicating defectsTransport proteinsLipid transportersContact sitesGenetic studiesLipid homeostasisLipid exchangeTransport roleProteinOrganellesVPS13ANeurodegenerative disordersStructure similarityHydrophobic cavity
2016
Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P
Dong R, Saheki Y, Swarup S, Lucast L, Harper JW, De Camilli P. Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P. Cell 2016, 166: 408-423. PMID: 27419871, PMCID: PMC4963242, DOI: 10.1016/j.cell.2016.06.037.Peer-Reviewed Original Research
2008
Molecular mechanisms in endocytosis at neuronal synapses
De Camilli P. Molecular mechanisms in endocytosis at neuronal synapses. The FASEB Journal 2008, 22: 250.3-250.3. DOI: 10.1096/fasebj.22.1_supplement.250.3.Peer-Reviewed Original ResearchFunction of dynaminNeuronal synapsesPowerful model systemRole of isoformsGTPase dynaminEndocytic proteinsEndocytic recyclingPlasma membraneMolecular mechanismsSecretory systemReconstitution experimentsEndocytosisSynaptic vesiclesHigh specializationDynaminLipid membranesRelease of neurotransmittersModel systemProteinMembraneFundamental mechanismsComplementary approachesRecent advancesDephosphorylationOrganelles
1996
Alzheimer Amyloid Protein Precursor Is Localized in Nerve Terminal Preparations to Rab5-containing Vesicular Organelles Distinct from Those Implicated in the Synaptic Vesicle Pathway*
Ikin A, Annaert W, Takei K, De Camilli P, Jahn R, Greengard P, Buxbaum J. Alzheimer Amyloid Protein Precursor Is Localized in Nerve Terminal Preparations to Rab5-containing Vesicular Organelles Distinct from Those Implicated in the Synaptic Vesicle Pathway*. Journal Of Biological Chemistry 1996, 271: 31783-31786. PMID: 8943215, DOI: 10.1074/jbc.271.50.31783.Peer-Reviewed Original ResearchConceptsAmyloid protein precursorSmall synaptic vesiclesSynaptic vesiclesVesicular organellesProtein precursorSynaptic vesicle recycling pathwayNerve terminal preparationsSynaptic vesicle pathwayVesicle recycling pathwayAlzheimer amyloid protein precursorRecycling pathwayVesicle pathwayOrganellesVesiclesImmunoisolatesPathwayHomogeneous populationRab5Nerve terminalsHigh levelsDistinctPrecursorsSubstantial numberBilamellar vesicles
1995
Molecular mechanisms in synaptic vesicle recycling
De Camilli P. Molecular mechanisms in synaptic vesicle recycling. FEBS Letters 1995, 369: 3-12. PMID: 7641879, DOI: 10.1016/0014-5793(95)00739-v.Peer-Reviewed Original ResearchConceptsSynaptic vesicle recyclingVesicle recyclingSynaptic vesiclesMolecular mechanismsPowerful experimental modelVesicular trafficVesicle reformationNon-peptide neurotransmittersSecretory organellesRecycling pathwayHigh specializationVesiclesSpecialized formExocytosisRecent studiesNerve terminalsOrganellesMechanismRecyclingAbundanceCurrent informationPathwayUnique properties
1994
Formation of synaptic vesicles
Mundigl O, De Camilli P. Formation of synaptic vesicles. Current Opinion In Cell Biology 1994, 6: 561-567. PMID: 7986534, DOI: 10.1016/0955-0674(94)90077-9.Peer-Reviewed Original ResearchConceptsSynaptic vesiclesNew synaptic vesiclesSV membranesTransport vesiclesEvolutionary originNon-peptide neurotransmittersMembrane proteinsSecretory organellesFocal signalingVesiclesExocytosisMolecular compositionCellsGamma-aminobutyric acidOrganellesSignalingNerve cellsProteinDepolarization-induced Ca2PathwaySignificant progressNeurotransmittersMembraneAssemblyNerve terminalsRecycling and biogenesis of synaptic vesicles
McPherson P, De Camilli P. Recycling and biogenesis of synaptic vesicles. Seminars In Neuroscience 1994, 6: 137-147. DOI: 10.1006/smns.1994.1019.Peer-Reviewed Original ResearchSynaptic vesiclesRegulated secretory pathwaySpecialized organellesSecretory pathwayEarly endosomesConstitutive recyclingVesicular pathwayMembrane componentsVesiclesBiogenesisSecretory granulesDependent fashionPlasmalemmaPathwayEndosomesOrganellesExocytosisNervous systemRecyclingNerve terminalsAvailable informationOpen questionGranulesCa2A role for synaptic vesicles in non‐neuronal cells: clues from pancreatic β cells and from chromaffin cells
Thomas‐Reetz A, De Camilli P. A role for synaptic vesicles in non‐neuronal cells: clues from pancreatic β cells and from chromaffin cells. The FASEB Journal 1994, 8: 209-216. PMID: 7907072, DOI: 10.1096/fasebj.8.2.7907072.Peer-Reviewed Original ResearchConceptsSynaptic-like microvesiclesSynaptic vesiclesAbundant synaptic vesicle proteinsVesicular carriersPancreatic beta cellsSynaptic vesicle proteinsVesicular trafficNon-neuronal cellsRecycling compartmentMembrane proteinsRecycling pathwayVesicle proteinsPancreatic β-cellsPeptide-secreting endocrine cellsMolecular mechanismsSpecialized subcompartmentBeta cellsPC12 cellsMembrane compositionVesiclesCell linesΒ-cellsOrganellesNeurotransmitter releaseNeurotransmitter-like substances
1993
Exo-Endocytotic Recycling of Synaptic Vesicles in Developing Neurons
Matteoli M, De Camilli P. Exo-Endocytotic Recycling of Synaptic Vesicles in Developing Neurons. 1993, 153-163. DOI: 10.1007/978-1-4757-9542-4_17.Peer-Reviewed Original ResearchLarge dense-core vesiclesSynaptic vesiclesExo-endocytotic recyclingNon-peptide neurotransmittersIntercellular signalingRegulated secretionLarge organellesElectron-dense coreSmall vesiclesDense-core vesiclesVesiclesCore vesiclesExocytosisNeurotransmitter moleculesSynaptic transmissionOrganellesOrgandiesSignalingNeuroactive peptidesNeurotransmittersNeuronsPeptides