2009
Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis
Song H, Zhang B, Watson M, Humphrey P, Lim H, Milbrandt J. Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis. Oncogene 2009, 28: 3307-3319. PMID: 19597465, PMCID: PMC2746257, DOI: 10.1038/onc.2009.181.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtrophyClusterinDisease Models, AnimalDisease ProgressionDown-RegulationGene DeletionGene Expression ProfilingGene Expression Regulation, NeoplasticHomeodomain ProteinsHumansLasersMaleMiceMicrodissectionOxidoreductases Acting on Sulfur Group DonorsProstateProstatic NeoplasmsProto-Oncogene Proteins c-aktProto-Oncogene Proteins c-mycPTEN PhosphohydrolaseSignal TransductionThioredoxinsTranscription FactorsTranscription, GeneticTranscriptional ActivationConceptsNKX3.1 lossMolecular consequencesGene expressionProstate tumorigenesisPTEN-AKTCancer initiationProstate cancer initiationCohort of genesNumber of genesC-Myc signaling pathwayDownstream target genesHuman prostate tumorigenesisLoss of NKX3.1NKX3.1 expressionTumor suppressor geneGene expression data setsExpression data setsQuiescin Q6Transcriptional regulatorsIndependent lossesExpression of NKX3.1Laser capture microdissectionTarget genesCancer gene expression data setsSignaling pathways
2000
LAPAROSCOPIC AUGMENTATION CYSTOPLASTY WITH DIFFERENT BIODEGRADABLE GRAFTS IN AN ANIMAL MODEL
PORTIS A, ELBAHNASY A, SHALHAV A, BREWER A, HUMPHREY P, MCDOUGALL E, CLAYMAN R. LAPAROSCOPIC AUGMENTATION CYSTOPLASTY WITH DIFFERENT BIODEGRADABLE GRAFTS IN AN ANIMAL MODEL. Journal Of Urology 2000, 164: 1405-1411. PMID: 10992423, DOI: 10.1016/s0022-5347(05)67207-2.Peer-Reviewed Original ResearchConceptsSmall intestinal submucosaHuman placental membranesAcellular tissue matrixBladder capacityLaparoscopic techniqueSIS groupBladder wall replacementLaparoscopic partial cystectomyTransitional cell epitheliumBovine pericardiumIntracorporeal suturing techniquesEvidence of encrustationSignificant inflammatory responseLapra-Ty clipsHost bladderPartial cystectomyAugmentation cystoplastyBladder augmentationMucosal coverageUrethral catheterBPC groupFree graftEndostitch deviceInflammatory responseBladder wall
1998
A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells
Garabedian E, Humphrey P, Gordon J. A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 15382-15387. PMID: 9860977, PMCID: PMC28051, DOI: 10.1073/pnas.95.26.15382.Peer-Reviewed Original ResearchConceptsMetastatic prostate cancerProstatic intraepithelial neoplasiaTransgenic mouse modelProstate cancerIntraepithelial neoplasiaMouse modelNeuroendocrine cellsHuman prostate cancerNeuroendocrine cell lineagesWeeks of ageNeuroendocrine differentiationSimian virus 40 T antigenLocal invasionMouse prostateCancerNeoplasiaProstateWeeksT antigenCell lineagesTransgene expressionMultiple pedigreesCellsMetastasisAndrogens
1997
Effect of Canarypox Virus (ALVAC)-Mediated Cytokine Expression on Murine Prostate Tumor Growth
Kawakita M, Rao G, Ritchey J, Ornstein D, Hudson M, Harmon T, Ratliff T, Humphrey P, Tartaglia J, Paoletti E. Effect of Canarypox Virus (ALVAC)-Mediated Cytokine Expression on Murine Prostate Tumor Growth. Journal Of The National Cancer Institute 1997, 89: 428-436. PMID: 9091644, DOI: 10.1093/jnci/89.6.428.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAvipoxvirusB7-1 AntigenCytokinesDisease Models, AnimalFlow CytometryGene Expression Regulation, NeoplasticGene Expression Regulation, ViralGene Transfer TechniquesGenetic VectorsImmunotherapyInterferon-gammaInterleukin-2MaleMiceMice, Inbred C57BLMice, SCIDProstatic NeoplasmsTime FactorsTumor Necrosis Factor-alphaConceptsRM-1 cellsTumor cell expressionMouse prostate cancer cellsIL-2TNF-alphaC57BL/6 miceProstate cancer cellsTumor growthCell expressionTumor sizeB7-1Gene product expressionCo-stimulatory molecules B7-1Canarypox virusCytotoxic T lymphocyte activityKaplan-Meier survival methodMeasurable tumor sizeNonspecific antitumor activitySubsequent tumor challengeT lymphocyte activityCancer cellsCytotoxic T cellsInfected cellsProstate tumor growthMouse prostate tumor modelLaparoscopic pyeloplasty in the animal model.
McDougall E, Elashry O, Clayman R, Humphrey P, Rayah H. Laparoscopic pyeloplasty in the animal model. JSLS Journal Of The Society Of Laparoscopic & Robotic Surgeons 1997, 1: 113-8. PMID: 9876657, PMCID: PMC3021264.Peer-Reviewed Original ResearchConceptsLaparoscopic pyeloplastyIntracorporeal suturing techniquesOperative timeEndostitch deviceSecondary ureteropelvic junction obstructionSuturing techniqueDifferent laparoscopic techniquesUnilateral UPJ obstructionLonger operative timeUreteropelvic junction obstructionLapra-Ty clipsRenal functionRenal scanSerum creatinineRenal biopsyUrine cultureGeneral anesthesiaJunction obstructionRetrograde pyelographyUreteral catheterizationLaparoscopic techniqueUPJ obstruction
1994
Development of a Mouse Model for Nonbacterial Prostatitis
Keetch D, Humphrey P, Ratliff T. Development of a Mouse Model for Nonbacterial Prostatitis. Journal Of Urology 1994, 152: 247-250. PMID: 8201676, DOI: 10.1016/s0022-5347(17)32871-9.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutoimmune DiseasesDisease Models, AnimalImmunotherapy, AdoptiveMaleMiceMice, Inbred StrainsProstateProstatitisConceptsNonbacterial prostatitisProstatic inflammationC57BL/6-lpr miceLpr miceBALB/c miceAdoptive transfer studiesCommon clinical entityDegree of inflammationBALB/cPeriglandular regionsAutoimmune processAJ miceLymphocytic infiltrationC57BL/6 miceClinical entityProstate antigenC miceImmune parametersSyngeneic miceProstatitisMouse modelProstatic tissueDisease processAnimal modelsInflammation