2024
Next-generation cell-penetrating antibodies for tumor targeting and RAD51 inhibition
Rackear M, Quijano E, Ianniello Z, Colón-Ríos D, Krysztofiak A, Abdullah R, Liu Y, Rogers F, Ludwig D, Dwivedi R, Bleichert F, Glazer P. Next-generation cell-penetrating antibodies for tumor targeting and RAD51 inhibition. Oncotarget 2024, 15: 699-713. PMID: 39352803, PMCID: PMC11444335, DOI: 10.18632/oncotarget.28651.Peer-Reviewed Original ResearchConceptsTumor targetingMonoclonal antibody therapyTumor-specific targetingCell uptakeNucleic acid bindingCell surface antigensAntibody therapyHuman variantsClinical successCell-penetrating antibodiesAcid bindingSystemic administrationSurface antigensTumorRAD51 inhibitionAntibody platformMechanism of cell penetrationBind RAD51AntibodiesFull-lengthSpecific targetsCell penetrationDisease targetsCellsAutoantibodies
2022
LINE-1 activation in the cerebellum drives ataxia
Takahashi T, Stoiljkovic M, Song E, Gao XB, Yasumoto Y, Kudo E, Carvalho F, Kong Y, Park A, Shanabrough M, Szigeti-Buck K, Liu ZW, Kristant A, Zhang Y, Sulkowski P, Glazer PM, Kaczmarek LK, Horvath TL, Iwasaki A. LINE-1 activation in the cerebellum drives ataxia. Neuron 2022, 110: 3278-3287.e8. PMID: 36070749, PMCID: PMC9588660, DOI: 10.1016/j.neuron.2022.08.011.Peer-Reviewed Original ResearchConceptsLINE-1 activationL1 activationAtaxia telangiectasia patientsNuclear element-1Transposable elementsEpigenetic silencersHuman genomeL1 promoterMolecular regulatorsDNA damagePurkinje cell dysfunctionElement 1First direct evidenceTelangiectasia patientsDirect targetingCerebellar expressionNeurodegenerative diseasesDisease etiologyCalcium homeostasis
2021
Vulnerability of IDH1-Mutant Cancers to Histone Deacetylase Inhibition via Orthogonal Suppression of DNA Repair
Dow J, Krysztofiak A, Liu Y, Colon-Rios DA, Rogers FA, Glazer PM. Vulnerability of IDH1-Mutant Cancers to Histone Deacetylase Inhibition via Orthogonal Suppression of DNA Repair. Molecular Cancer Research 2021, 19: 2057-2067. PMID: 34535560, PMCID: PMC8642278, DOI: 10.1158/1541-7786.mcr-21-0456.Peer-Reviewed Original ResearchConceptsHistone deacetylase inhibitor vorinostatPatient-derived tumor xenograftsHomology-directed repairIsocitrate dehydrogenase 1/2 mutationsHistone deacetylase inhibitionIDH1 mutant cellsGreater cell deathHDACi treatmentInhibitor vorinostatTumor xenograftsDeacetylase inhibitionIDH1/2 mutationsPotential biomarkersSpecific cancersMutant cancersCancerCancer cellsDNA repair defectsMalignancyVorinostatDNA double-strand breaksGliomasHistone hypermethylationCell deathPARPiBBIT20 inhibits homologous DNA repair with disruption of the BRCA1–BARD1 interaction in breast and ovarian cancer
Raimundo L, Paterna A, Calheiros J, Ribeiro J, Cardoso DSP, Piga I, Neto SJ, Hegan D, Glazer PM, Indraccolo S, Mulhovo S, Costa JL, Ferreira M, Saraiva L. BBIT20 inhibits homologous DNA repair with disruption of the BRCA1–BARD1 interaction in breast and ovarian cancer. British Journal Of Pharmacology 2021, 178: 3627-3647. PMID: 33899955, PMCID: PMC9124438, DOI: 10.1111/bph.15506.Peer-Reviewed Original ResearchConceptsTriple-negative breastOvarian cancerXenograft mouse modelMouse modelAntitumour activityAdvanced ovarian cancerCancer cellsPatient-derived cell linesHomologous DNA repairOvarian cancer cellsNon-malignant cellsPatient-derived cellsMarked synergistic effectAvailable therapiesCombination therapyCell cycle arrestReactive oxygen species generationSide effectsDNA repair-related genesSingle agentTherapeutic outcomesCancerOxygen species generationPersonalized treatmentResistant cancersThe NIH Somatic Cell Genome Editing program
Saha K, Sontheimer EJ, Brooks PJ, Dwinell MR, Gersbach CA, Liu DR, Murray SA, Tsai SQ, Wilson RC, Anderson DG, Asokan A, Banfield JF, Bankiewicz KS, Bao G, Bulte JWM, Bursac N, Campbell JM, Carlson DF, Chaikof EL, Chen ZY, Cheng RH, Clark KJ, Curiel DT, Dahlman JE, Deverman BE, Dickinson ME, Doudna JA, Ekker SC, Emborg ME, Feng G, Freedman BS, Gamm DM, Gao G, Ghiran IC, Glazer PM, Gong S, Heaney JD, Hennebold JD, Hinson JT, Khvorova A, Kiani S, Lagor WR, Lam KS, Leong KW, Levine JE, Lewis JA, Lutz CM, Ly DH, Maragh S, McCray PB, McDevitt TC, Mirochnitchenko O, Morizane R, Murthy N, Prather RS, Ronald JA, Roy S, Roy S, Sabbisetti V, Saltzman WM, Santangelo PJ, Segal DJ, Shimoyama M, Skala MC, Tarantal AF, Tilton JC, Truskey GA, Vandsburger M, Watts JK, Wells KD, Wolfe SA, Xu Q, Xue W, Yi G, Zhou J. The NIH Somatic Cell Genome Editing program. Nature 2021, 592: 195-204. PMID: 33828315, PMCID: PMC8026397, DOI: 10.1038/s41586-021-03191-1.Peer-Reviewed Original ResearchConceptsDownstream functional consequencesGenome modificationHuman genomeGenome editingGenome editorsSomatic cellsHuman cellsFunctional consequencesBiomedical research communityGenomeLarge animalsBiological systemsCellsHuman healthHuman biological systemsEditingVivoAnimal modelsNew therapiesNew opportunitiesWide rangeConsortiumCooperation between oncogenic Ras and wild-type p53 stimulates STAT non-cell autonomously to promote tumor radioresistance
Dong YL, Vadla GP, Lu J, Ahmad V, Klein TJ, Liu LF, Glazer PM, Xu T, Chabu CY. Cooperation between oncogenic Ras and wild-type p53 stimulates STAT non-cell autonomously to promote tumor radioresistance. Communications Biology 2021, 4: 374. PMID: 33742110, PMCID: PMC7979758, DOI: 10.1038/s42003-021-01898-5.Peer-Reviewed Original ResearchMeSH KeywordsA549 CellsAnimalsAnimals, Genetically ModifiedCell ProliferationCytokinesDrosophila melanogasterDrosophila ProteinsFemaleGene Expression Regulation, NeoplasticGenes, rasHumansJanus KinasesLung NeoplasmsMaleMice, NudeMice, TransgenicParacrine CommunicationRadiation ToleranceSignal TransductionSTAT Transcription FactorsTumor BurdenTumor Suppressor Protein p53Xenograft Model Antitumor AssaysConceptsTumor microenvironmentTumor radioresistanceRas clonesOncogenic Ras mutationsClinical outcomesRA tissuesCancer patientsJAK/STATRadiation therapyRobust tumorOncogenic RasTherapy outcomeTumor resistanceTumor tissueRas mutationsTumor cellsJAK/OutcomesRadioresistanceCellular responsesTissueCell-cell interactionsPatientsCytokinesRadiotherapyNanoparticles for delivery of agents to fetal lungs
Ullrich SJ, Freedman-Weiss M, Ahle S, Mandl HK, Piotrowski-Daspit AS, Roberts K, Yung N, Maassel N, Bauer-Pisani T, Ricciardi AS, Egan ME, Glazer PM, Saltzman WM, Stitelman DH. Nanoparticles for delivery of agents to fetal lungs. Acta Biomaterialia 2021, 123: 346-353. PMID: 33484911, PMCID: PMC7962939, DOI: 10.1016/j.actbio.2021.01.024.Peer-Reviewed Original ResearchConceptsFetal lungCellular uptakeIntra-amniotic routeRoute of deliveryCongenital lung diseaseDelivery of agentsIntra-amniotic deliveryRelative cellular uptakeNanoparticlesFetal treatmentDiaphragmatic herniaLung diseaseFetal therapyLung tissueFetal miceIntravenous deliveryCystic fibrosisLungLung therapyInterventional technologiesTherapeutic agentsEndothelial cellsCell populationsEffective targetingTherapy
2020
Hypoxia Induces Resistance to EGFR Inhibitors in Lung Cancer Cells via Upregulation of FGFR1 and the MAPK Pathway
Lu Y, Liu Y, Oeck S, Zhang GJ, Schramm A, Glazer PM. Hypoxia Induces Resistance to EGFR Inhibitors in Lung Cancer Cells via Upregulation of FGFR1 and the MAPK Pathway. Cancer Research 2020, 80: 4655-4667. PMID: 32873635, PMCID: PMC7642024, DOI: 10.1158/0008-5472.can-20-1192.Peer-Reviewed Original ResearchMeSH KeywordsAcrylamidesAniline CompoundsAnimalsAntineoplastic AgentsCarcinoma, Non-Small-Cell LungCell HypoxiaCell Line, TumorDrug Resistance, NeoplasmHumansLung NeoplasmsMAP Kinase Signaling SystemMiceProtein Kinase InhibitorsReceptor, Fibroblast Growth Factor, Type 1Up-RegulationXenograft Model Antitumor AssaysConceptsEGFR tyrosine kinase inhibitorsTyrosine kinase inhibitorsEpithelial-mesenchymal transitionNon-small cell lung cancer (NSCLC) cell line H1975Fibroblast growth factor receptor 1 expressionMEK inhibitorsNSCLC cell line H1975EGFR-TKI resistanceEGFR-TKI osimertinibOverexpression of FGFR1Receptor 1 expressionEGFR-TKI sensitivityExpression of FGFR1Lung cancer cellsAttractive therapeutic strategyMAPK pathwayProapoptotic factor BimClinical efficacyConventional therapyDevelopment of resistanceEGFR mutationsSelective small molecule inhibitorsTKI resistanceKnockdown of FGFR1Therapeutic strategiesKu80-Targeted pH-Sensitive Peptide–PNA Conjugates Are Tumor Selective and Sensitize Cancer Cells to Ionizing Radiation
Kaplan AR, Pham H, Liu Y, Oyaghire S, Bahal R, Engelman DM, Glazer PM. Ku80-Targeted pH-Sensitive Peptide–PNA Conjugates Are Tumor Selective and Sensitize Cancer Cells to Ionizing Radiation. Molecular Cancer Research 2020, 18: 873-882. PMID: 32098827, PMCID: PMC7272299, DOI: 10.1158/1541-7786.mcr-19-0661.Peer-Reviewed Original ResearchConceptsCancer cellsTumor cellsLocal tumor irradiationTumor-selective radiosensitizationMouse tumor modelsKu80 expressionNovel agentsTumor irradiationTumor growthTumor microenvironmentTumor modelRadiation treatmentTherapeutic agentsSubcutaneous mouse tumor modelTumorsMiceCancer therapyHealthy tissueAcute toxicitySpecific targetingSelective effectPNA antisenseTumor-SelectiveAcidic culture conditionsSensitize cancer cells
2019
Mitochondrial DNA stress signalling protects the nuclear genome
Wu Z, Oeck S, West AP, Mangalhara KC, Sainz AG, Newman LE, Zhang XO, Wu L, Yan Q, Bosenberg M, Liu Y, Sulkowski PL, Tripple V, Kaech SM, Glazer PM, Shadel GS. Mitochondrial DNA stress signalling protects the nuclear genome. Nature Metabolism 2019, 1: 1209-1218. PMID: 32395698, PMCID: PMC7213273, DOI: 10.1038/s42255-019-0150-8.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorCell NucleusCytosolDNA DamageDNA, MitochondrialDNA-Binding ProteinsGenomeHigh Mobility Group ProteinsInterferonsInterferon-Stimulated Gene Factor 3Membrane ProteinsMiceMice, KnockoutMice, NudeNF-kappa BNucleotidyltransferasesProtein Serine-Threonine KinasesSignal TransductionConceptsMtDNA stressNuclear DNAGene expressionThousands of copiesMost cell typesRepair responseAcute antiviral responseNuclear genomeCircular mtDNAHigher-order structureInterferon gene expressionEssential proteinsMitochondrial DNACultured primary fibroblastsDNA stressUnphosphorylated formInterferon-stimulated gene expressionMouse melanoma cellsNDNA repairSignaling responseOxidative phosphorylationNDNA damageMtDNA damageMtDNAPrimary fibroblastsCediranib suppresses homology-directed DNA repair through down-regulation of BRCA1/2 and RAD51
Kaplan AR, Gueble SE, Liu Y, Oeck S, Kim H, Yun Z, Glazer PM. Cediranib suppresses homology-directed DNA repair through down-regulation of BRCA1/2 and RAD51. Science Translational Medicine 2019, 11 PMID: 31092693, PMCID: PMC6626544, DOI: 10.1126/scitranslmed.aav4508.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBRCA1 ProteinBRCA2 ProteinCell Line, TumorDNA RepairDown-RegulationE2F4 Transcription FactorFemaleGene Expression Regulation, NeoplasticHumansMice, NudePoly(ADP-ribose) Polymerase InhibitorsQuinazolinesRad51 RecombinaseReceptors, Platelet-Derived Growth FactorTumor HypoxiaVascular Endothelial Growth Factor Receptor-2Xenograft Model Antitumor AssaysConceptsHomology-directed DNA repairDNA repairE2F transcription factor 4Protein phosphatase 2ATranscription factor 4DNA repair inhibitorsPhosphatase 2ARAD51 recombinaseTranscriptional corepressorMouse tumor xenograftsSynthetic lethalityGene expressionRB2/Mouse bone marrowGrowth factor receptor inhibitionRepair inhibitorsUnknown mechanismPlatelet-derived growth factor receptor inhibitionFactor 4Human tumorsInhibitor olaparibPARP inhibitorsMutationsCombination of cediranibCancer therapy
2018
PTEN Regulates Non-Homologous End Joining by Epigenetic Induction of NHEJ1/XLF
Sulkowski PL, Scanlon SE, Oeck S, Glazer PM. PTEN Regulates Non-Homologous End Joining by Epigenetic Induction of NHEJ1/XLF. Molecular Cancer Research 2018, 16: molcanres.0581.2017. PMID: 29739874, PMCID: PMC6072556, DOI: 10.1158/1541-7786.mcr-17-0581.Peer-Reviewed Original ResearchConceptsDNA double-strand breaksKey DNA repair pathwaysCytotoxic DNA lesionsXRCC4-like factorPatient-derived melanomasDNA repair pathwaysDouble-strand breaksNovel regulatory roleTumor suppressor geneSuppression of PTENHistone acetyltransferasesDSB repairGenomic analysisNHEJ defectsNonhomologous endRepair pathwaysGene promoterNovel functionRegulatory acetylationNHEJ deficiencyDNA lesionsRegulatory roleSuppressor geneNHEJ DSB repairNHEJIn utero nanoparticle delivery for site-specific genome editing
Ricciardi AS, Bahal R, Farrelly JS, Quijano E, Bianchi AH, Luks VL, Putman R, López-Giráldez F, Coşkun S, Song E, Liu Y, Hsieh WC, Ly DH, Stitelman DH, Glazer PM, Saltzman WM. In utero nanoparticle delivery for site-specific genome editing. Nature Communications 2018, 9: 2481. PMID: 29946143, PMCID: PMC6018676, DOI: 10.1038/s41467-018-04894-2.Peer-Reviewed Original ResearchConceptsSite-specific genome editingReversal of splenomegalyPeptide nucleic acidIntra-amniotic administrationBlood hemoglobin levelsMonogenic disordersNanoparticle deliveryPolymeric nanoparticlesPostnatal elevationGestational ageHemoglobin levelsImproved survivalPediatric morbidityDisease improvementHuman β-thalassemiaReticulocyte countNormal organ developmentMouse modelNormal rangeEarly interventionGenome editingOff-target mutationsPostnatal growthGene editingVersatile method
2017
2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity
Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H, Liu Y, Sundaram RK, Hegan DC, Fons NR, Breuer GA, Song Y, Mishra-Gorur K, De Feyter HM, de Graaf RA, Surovtseva YV, Kachman M, Halene S, Günel M, Glazer PM, Bindra RS. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Science Translational Medicine 2017, 9 PMID: 28148839, PMCID: PMC5435119, DOI: 10.1126/scitranslmed.aal2463.Peer-Reviewed Original ResearchConceptsIsocitrate dehydrogenase 1PARP inhibitor sensitivityPossible therapeutic strategiesHomologous recombination defectsTherapeutic strategiesTumor xenograftsInhibitor sensitivityPathologic processesSmall molecule inhibitorsIDH1/2 mutationsTumor progressionIDH2 mutationsMutant IDHPolymerase inhibitorsGlioma cellsTumor cellsHR deficiencyPARP inhibitionIDH mutationsInhibitory effectDehydrogenase 1Neomorphic activityMutant IDH1 enzymeDependent dioxygenasesMutant cells
2016
In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery
Bahal R, Ali McNeer N, Quijano E, Liu Y, Sulkowski P, Turchick A, Lu YC, Bhunia DC, Manna A, Greiner DL, Brehm MA, Cheng CJ, López-Giráldez F, Ricciardi A, Beloor J, Krause DS, Kumar P, Gallagher PG, Braddock DT, Mark Saltzman W, Ly DH, Glazer PM. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery. Nature Communications 2016, 7: 13304. PMID: 27782131, PMCID: PMC5095181, DOI: 10.1038/ncomms13304.Peer-Reviewed Original ResearchConceptsNanoparticle deliveryGene correctionReversal of splenomegalyPeptide nucleic acidLow off-target effectsVivo correctionGenome editingOff-target effectsGene editingHaematopoietic stem cellsNucleic acidsDonor DNAStem cellsΓPNAΒ-thalassaemiaNanoparticlesDeliveryEditingSCF treatmentTriplex formation
2015
Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium
McNeer NA, Anandalingam K, Fields RJ, Caputo C, Kopic S, Gupta A, Quijano E, Polikoff L, Kong Y, Bahal R, Geibel JP, Glazer PM, Saltzman WM, Egan ME. Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium. Nature Communications 2015, 6: 6952. PMID: 25914116, PMCID: PMC4480796, DOI: 10.1038/ncomms7952.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineChloridesCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDNA-Binding ProteinsGenetic TherapyHigh-Throughput Nucleotide SequencingHumansLactic AcidMice, Inbred C57BLNanoparticlesPeptide Nucleic AcidsPolyglycolic AcidPolylactic Acid-Polyglycolic Acid CopolymerPolymersRespiratory MucosaConceptsFacile genome engineeringVivo gene deliveryBiodegradable polymer nanoparticlesTransient gene expressionNanoparticle systemsGene deliveryPolymer nanoparticlesGene correctionGenome engineeringNanoparticlesOff-target effectsPeptide nucleic acidLethal genetic disorderNucleic acidsDonor DNATarget effectsIntranasal deliveryDeliveryCystic fibrosisEngineeringOligonucleotideChloride effluxHuman cellsAirway epitheliumLung tissue
2014
MicroRNA silencing for cancer therapy targeted to the tumour microenvironment
Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C, Svoronos A, Braddock DT, Glazer PM, Engelman DM, Saltzman WM, Slack FJ. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 2014, 518: 107-110. PMID: 25409146, PMCID: PMC4367962, DOI: 10.1038/nature13905.Peer-Reviewed Original Research
2001
Intracellular generation of single-stranded DNA for chromosomal triplex formation and induced recombination
Datta H, Glazer P. Intracellular generation of single-stranded DNA for chromosomal triplex formation and induced recombination. Nucleic Acids Research 2001, 29: 5140-5147. PMID: 11812847, PMCID: PMC97609, DOI: 10.1093/nar/29.24.5140.Peer-Reviewed Original ResearchConceptsNovel vector systemMouse cellsInduced recombinationPrimer extension analysisVector systemGenome modificationTriplex formationExtension analysisIntrachromosomal recombinationChromosomal eventsGene expressionSequence insertReporter substrateSuch oligodeoxyribonucleotidesTarget siteSsDNA moleculesIntracellular generationDNARecombinationEfficient intracellular deliveryCellsSuch moleculesSequenceIntracellular deliveryOligodeoxyribonucleotidesChromosome Targeting at Short Polypurine Sites by Cationic Triplex-forming Oligonucleotides*
Vasquez K, Dagle J, Weeks D, Glazer P. Chromosome Targeting at Short Polypurine Sites by Cationic Triplex-forming Oligonucleotides*. Journal Of Biological Chemistry 2001, 276: 38536-38541. PMID: 11504712, DOI: 10.1074/jbc.m101797200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCationsChromosomesCOS CellsDiaminesDNADNA Mutational AnalysisDose-Response Relationship, DrugEthylenediaminesFicusinGenes, ReporterGenes, SuppressorGenetic TechniquesGenomeIndicators and ReagentsMagnesiumMiceMice, KnockoutModels, GeneticMolecular Sequence DataMutagenesisMutagenesis, Site-DirectedNucleic Acid ConformationPotassiumProtein BindingPurinesRNA, TransferSequence Homology, Nucleic AcidConceptsChromosomal reporter geneMonkey COS cellsTarget siteSite-specific mutationsTriplex target sitesChromosome targetingEpisomal targetChromosomal targetsGene mutagenesisMammalian cellsSite-specific inductionChromosomal lociReporter geneCOS cellsGene knockoutGenomic DNAMouse cellsSite-directed modificationOligonucleotide bindsPhosphodiester bondShort sitesThird strand bindingPhosphodiester backboneSystemic administrationDNADirected gene modification via triple helix formation.
Gorman L, Glazer P. Directed gene modification via triple helix formation. 2001, 1: 391-9. PMID: 11899085, DOI: 10.2174/1566524013363771.Peer-Reviewed Original ResearchConceptsGene modificationNon-functional gene productMammalian genesGene productsGenomic DNASingle nucleotideDefective geneTriple helix formationGenetic diseasesTriplex formingGenesHelix formationEfficient targetingNucleic acidsDNAInitial stepGene therapyCorrect sequenceNucleotidesMutationsMoleculesImportant advancesSequenceTargetingModification