2016
Precise Genome Modification Using Triplex Forming Oligonucleotides and Peptide Nucleic Acids
Bahal R, Gupta A, Glazer P. Precise Genome Modification Using Triplex Forming Oligonucleotides and Peptide Nucleic Acids. Advances In Experimental Medicine And Biology 2016, 93-110. DOI: 10.1007/978-1-4939-3509-3_6.Peer-Reviewed Original ResearchHomologous recombinationSite-specific genome editingPrecise genome modificationGenomic DNA sequencesSpecific genome editingTriplex technologySingle base pair mutationTriplex forming oligonucleotideBase pair mutationGenetic disordersGenome modificationNucleic acidsDefective protein synthesisGenome editingDNA sequencesDifferent genesPair mutationsProtein synthesisMutation sitesGenesSpecific sitesGene replacement therapyExpressionOligonucleotideMutagenesis
2007
Co-Repression of Mismatch Repair Gene Expression by Hypoxia in Cancer Cells: Role of the Myc/Max Network
Bindra R, Glazer P. Co-Repression of Mismatch Repair Gene Expression by Hypoxia in Cancer Cells: Role of the Myc/Max Network. International Journal Of Radiation Oncology • Biology • Physics 2007, 69: s613. DOI: 10.1016/j.ijrobp.2007.07.1928.Peer-Reviewed Original Research
2006
Peptide Nucleic Acids as Agents to Modify Target Gene Expression and Function
Wang G, Glazer P. Peptide Nucleic Acids as Agents to Modify Target Gene Expression and Function. Medical Intelligence Unit 2006, 223-235. DOI: 10.1007/0-387-32956-0_14.Peer-Reviewed Original ResearchTarget gene expressionGene expressionMolecular mechanismsHuman diseasesGene expression regulationExpression regulationTranscription initiationDNA repairImportant genesMolecular basisTranscriptionGenesNucleic acidsExpressionAbility of PNAMutagenesisAttractive strategyPowerful methodBetter understandingRegulationMechanismPeptide nucleic acidBroad range
2004
Targeted Genome Modification Via Triple Helix Formation
Rogers F, Glazer P. Targeted Genome Modification Via Triple Helix Formation. Cancer Drug Discovery And Development 2004, 27-43. DOI: 10.1007/978-1-59259-777-2_3.Peer-Reviewed Original ResearchDefective geneTargeted genome modificationInhibitors of proteinGene functionGenome modificationGene productsGene expressionTriple helix formationTremendous clinical valueSynthetic oligonucleotidesGenesInherited diseaseHelix formationTreatment of diseasesExpressionDifferent diseasesProteinTherapeutic agentsOligonucleotideTherapeutic useTremendous stridesInhibitorsFunction
2001
Genomic Instability in Cancer
Rockwell S, Yuan J, Peretz S, Glazer P. Genomic Instability in Cancer. Novartis Foundation Symposia 2001, 240: 133-151. PMID: 11727926, DOI: 10.1002/0470868716.ch9.Peer-Reviewed Original ResearchConceptsGenomic instabilityChromosomal fragile sitesExposure of cellsNutrient deprivationDNA repairGenomic rearrangementsSelection pressureDNA overreplicationGene expressionGenetic changesFragile sitesGenetic heterogeneityCell proliferationGene amplificationCell populationsBenign cell populationsMutation frequencyHypoxic environmentAggressive phenotypeSolid tumorsExpressionOverreplicationCellsAdverse microenvironmentCytogenetic changes
1999
Genome Modification by Triplex-Forming Oligonucleotides
Vasquez K, Glazer P. Genome Modification by Triplex-Forming Oligonucleotides. Perspectives In Antisense Science 1999, 2: 167-179. DOI: 10.1007/978-1-4615-5177-5_13.Peer-Reviewed Original ResearchSite-specific genome modificationGenome modificationSpecific DNA sequencesExpression of genesLevel of DNAMammalian cellsHomologous recombinationDNA sequencesGene replacementGene expressionLiving cellsTriplex technologyTriplex formingSpecific sitesDNARecombinationExpressionInitial stepCellsMutagenesisGenesMutationsModificationSitesSequence