2023
SLC26A1 is a major determinant of sulfate homeostasis in humans
Pfau A, López-Cayuqueo K, Scherer N, Wuttke M, Wernstedt A, Fassrainer D, Smith D, van de Kamp J, Ziegeler K, Eckardt K, Luft F, Aronson P, Köttgen A, Jentsch T, Knauf F. SLC26A1 is a major determinant of sulfate homeostasis in humans. Journal Of Clinical Investigation 2023, 133: e161849. PMID: 36719378, PMCID: PMC9888379, DOI: 10.1172/jci161849.Peer-Reviewed Original ResearchConceptsSulfate homeostasisIntervertebral disc disordersWhole-exome sequencingMajor determinantBack painPatient presentingMusculoskeletal healthDisc disordersPlasma sulfateSulfate reabsorptionFunctional expression assaysCartilage healthHomozygous mutationPotential targetPopulation studiesNumerous physiological processesRecent evidenceExome analysisHomeostasisHyposulfatemiaExpression assaysPivotal roleClinical geneticsAdditional variantsHumans
2022
Oxalate homeostasis
Ermer T, Nazzal L, Tio M, Waikar S, Aronson P, Knauf F. Oxalate homeostasis. Nature Reviews Nephrology 2022, 19: 123-138. PMID: 36329260, PMCID: PMC10278040, DOI: 10.1038/s41581-022-00643-3.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsKidney diseaseOxalate homeostasisAnti-inflammatory medicationsChronic kidney diseaseKidney replacement therapySudden cardiac deathProgressive kidney diseaseOutlook of patientsOxalate nephropathyCardiovascular complicationsSystemic inflammationCardiac deathReplacement therapySecondary hyperoxaluriaKidney failureElevated plasmaConsequent impairmentNovel therapeuticsPatientsDiseaseEffective elimination strategiesEndogenous sourcesHomeostasisElimination strategyExcretion
2018
Characterization of renal NaCl and oxalate transport in Slc26a6−/− mice
Knauf F, Velazquez H, Pfann V, Jiang Z, Aronson PS. Characterization of renal NaCl and oxalate transport in Slc26a6−/− mice. American Journal Of Physiology. Renal Physiology 2018, 316: f128-f133. PMID: 30427220, PMCID: PMC6383200, DOI: 10.1152/ajprenal.00309.2018.Peer-Reviewed Original ResearchConceptsWild-type miceNaCl homeostasisBlood pressureProximal tubulesFree-flow micropuncture studiesSurface proximal tubulesLow-salt dietMean blood pressureLower blood pressureUrine flow rateLack of effectFurosemide infusionNet renal secretionSodium excretionUrine oxalateFractional excretionMicropuncture studiesNaCl deliveryRenal secretionApical membrane ClExchanger SLC26A6MiceRenal NaClNaCl transportHomeostasis
2011
Effects of pH on Potassium: New Explanations for Old Observations
Aronson PS, Giebisch G. Effects of pH on Potassium: New Explanations for Old Observations. Journal Of The American Society Of Nephrology 2011, 22: 1981-1989. PMID: 21980112, PMCID: PMC3231780, DOI: 10.1681/asn.2011040414.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
1985
The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes.
Mahnensmith RL, Aronson PS. The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes. Circulation Research 1985, 56: 773-788. PMID: 2988813, DOI: 10.1161/01.res.56.6.773.Commentaries, Editorials and LettersMeSH KeywordsAcid-Base EquilibriumAnimalsBiological Transport, ActiveBlood PlateletsCalciumCarrier ProteinsCations, MonovalentCell MembraneEpitheliumHormonesHumansHydrogenHydrogen-Ion ConcentrationHypertensionLeukocytesMembrane ProteinsNeoplasmsSodiumSodium-Hydrogen ExchangersSodium-Potassium-Exchanging ATPaseWater-Electrolyte BalanceConceptsSodium-hydrogen exchangerCellular acid-base homeostasisAllosteric regulationPlasma membraneRegulation of intracellularStimulus-response couplingIntracellular protonsPathophysiological processesPhysiological roleTransport systemTransmembrane exchangeCell growthAcid-base homeostasisRegulationSodium-hydrogen exchangeKinetic propertiesSuch diverse conditionsMetabolic responsePathophysiological roleDiverse conditionsCellsCell volumeRoleHomeostasisIntracellular