2023
Arterial spin labeled perfusion imaging with balanced steady-state free precession readout and radial sampling
Han P, Marin T, Zhuo Y, Ouyang J, El Fakhri G, Ma C. Arterial spin labeled perfusion imaging with balanced steady-state free precession readout and radial sampling. Magnetic Resonance Imaging 2023, 102: 126-132. PMID: 37187264, PMCID: PMC10524790, DOI: 10.1016/j.mri.2023.05.005.Peer-Reviewed Original ResearchConceptsOff-resonance effectsBalanced steady-state free precessionPhase-cycling techniqueTemporal SNRBalanced steady-state free precession acquisitionRadial sampling schemeSpoiled gradient-recalled acquisitionRadial samplingCartesian sampling schemeBalanced steady-state free precession readoutK-space dataSampling schemeSpin labelingSteady-state free precessionK-spaceImage readoutBanding artifactsMotion-related artifactsReadoutFree precessionArterial spin labelingImage reconstructionParallel imagingImaging timePerfusion-weighted imaging
2016
DC artifact correction for arbitrary phase-cycling sequence
Han P, Park H, Park S. DC artifact correction for arbitrary phase-cycling sequence. Magnetic Resonance Imaging 2016, 38: 21-26. PMID: 27998747, DOI: 10.1016/j.mri.2016.12.015.Peer-Reviewed Original Research
2015
Whole‐brain perfusion imaging with balanced steady‐state free precession arterial spin labeling
Han P, Ye J, Kim E, Choi S, Park S. Whole‐brain perfusion imaging with balanced steady‐state free precession arterial spin labeling. NMR In Biomedicine 2015, 29: 264-274. PMID: 26676386, DOI: 10.1002/nbm.3463.Peer-Reviewed Original ResearchConceptsSignal-to-noise ratioBalanced steady-state free precessionTotal scan timeCompressive sensingReduced susceptibility artifactsPerfusion imagingWhole-brain perfusion imagingScan timeSusceptibility artifactsPseudo-continuous ASLReadout timeCS approachSteady-state free precessionAcquisition of perfusion imagesSegmentation approachFree precessionBSSFP readoutArterial spin labeling (ASL) perfusionSpatial resolutionImage qualityDistortion-freeReadoutHigh-resolutionTemporal resolutionImagesCompressed Sensing for fMRI: Feasibility Study on the Acceleration of Non‐EPI fMRI at 9.4T
Han P, Park S, Kim S, Ye J. Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non‐EPI fMRI at 9.4T. BioMed Research International 2015, 2015: 131926. PMID: 26413503, PMCID: PMC4564593, DOI: 10.1155/2015/131926.Peer-Reviewed Original ResearchConceptsCompressive sensingBalanced steady-state free precessionSensitive to image distortionsHigh-resolution fMRI techniqueMagnetic field inhomogeneityLocal magnetic field inhomogeneitiesConventional functional magnetic resonance imagingCS reconstructionGradient-recalled echoCS algorithmFOCUSS algorithmNon-EPI sequencesMagnetic fieldSampling patternHigh-resolution functional magnetic resonance imagingFunctional magnetic resonance imagingField inhomogeneityGRE-EPIImage distortionSteady-state free precessionExperimental resultsTemporal resolutionAlgorithmFree precessionSpoiled gradient echoPhysiological and Functional Magnetic Resonance Imaging Using Balanced Steady-state Free Precession
Park S, Han P, Choi S. Physiological and Functional Magnetic Resonance Imaging Using Balanced Steady-state Free Precession. Korean Journal Of Radiology 2015, 16: 550-559. PMID: 25995684, PMCID: PMC4435985, DOI: 10.3348/kjr.2015.16.3.550.Peer-Reviewed Original ResearchInvestigation of Inter-Slice Magnetization Transfer Effects as a New Method for MTR Imaging of the Human Brain
Barker J, Han P, Choi S, Bae K, Park S. Investigation of Inter-Slice Magnetization Transfer Effects as a New Method for MTR Imaging of the Human Brain. PLOS ONE 2015, 10: e0117101. PMID: 25664938, PMCID: PMC4321840, DOI: 10.1371/journal.pone.0117101.Peer-Reviewed Original ResearchConceptsBalanced steady-state free precessionFlip angleMagnetization transferMagnetization transfer effectsSteady-state free precessionSaturation pulseModel of MTFree precessionMT-weightedAcquisition parametersMT effectMT ratioDelay timePrecessionMTR imagesHigh SNRInterslicePE stepsMagnetizationFlip