2012
Teleost growth factor independence (gfi) genes differentially regulate successive waves of hematopoiesis
Cooney JD, Hildick-Smith GJ, Shafizadeh E, McBride PF, Carroll KJ, Anderson H, Shaw GC, Tamplin OJ, Branco DS, Dalton AJ, Shah DI, Wong C, Gallagher PG, Zon LI, North TE, Paw BH. Teleost growth factor independence (gfi) genes differentially regulate successive waves of hematopoiesis. Developmental Biology 2012, 373: 431-441. PMID: 22960038, PMCID: PMC3532562, DOI: 10.1016/j.ydbio.2012.08.015.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCloning, MolecularConserved SequenceDNA-Binding ProteinsEmbryo, NonmammalianEpistasis, GeneticErythropoiesisEvolution, MolecularGene Expression Regulation, DevelopmentalHematopoiesisHematopoietic Stem CellsHematopoietic SystemModels, BiologicalMolecular Sequence DataZebrafishZebrafish ProteinsConceptsHematopoietic stem cellsTranscription factorsDefinitive hematopoiesisRUNX-1Hematopoietic stem/progenitor cell developmentKey hematopoietic transcription factorsC-MybDefinitive hematopoietic progenitorsHematopoietic transcription factorsProgenitor cell developmentLineage specificationPrimitive hematopoiesisGfi1aaEpistatic relationshipErythroid developmentTranscriptional programsGFI1BHematopoietic lineagesFunctional analysisCritical regulatorCell developmentZebrafishHematopoietic progenitorsDistinct rolesPrimitive progenitors
2011
Chromatin boundaries require functional collaboration between the hSET1 and NURF complexes
Li X, Wang S, Li Y, Deng C, Steiner LA, Xiao H, Wu C, Bungert J, Gallagher PG, Felsenfeld G, Qiu Y, Huang S. Chromatin boundaries require functional collaboration between the hSET1 and NURF complexes. Blood 2011, 118: 1386-1394. PMID: 21653943, PMCID: PMC3152501, DOI: 10.1182/blood-2010-11-319111.Peer-Reviewed Original ResearchConceptsErythroid genesInsulator sitesBarrier activityActive chromatin structureNucleosome remodeling activitiesChromatin barrier activityHistone H3K4 methyltransferaseChicken β-globinChromatin boundariesNURF complexChromatin structureInsulator functionNucleosome positioningMultiprotein complexesProtein complexesH3K4 methyltransferaseHS4 insulatorChromatin insulatorNURFH3K27me3 levelsLoci resultsLinker regionKnock-downΒ-globinFunctional collaboration
2010
A Comprehensive Model of the Spectrin Divalent Tetramer Binding Region Deduced Using Homology Modeling and Chemical Cross-linking of a Mini-spectrin [S] *
Li D, Harper SL, Tang HY, Maksimova Y, Gallagher PG, Speicher DW. A Comprehensive Model of the Spectrin Divalent Tetramer Binding Region Deduced Using Homology Modeling and Chemical Cross-linking of a Mini-spectrin [S] *. Journal Of Biological Chemistry 2010, 285: 29535-29545. PMID: 20610390, PMCID: PMC2937985, DOI: 10.1074/jbc.m110.145573.Peer-Reviewed Original ResearchConceptsHelix faceRed cell membrane stabilityHomology modelingNon-homologous tailsCell membrane stabilityC-terminal tailWild-type bindingMedium-resolution structureSubtle conformational changesTetramer complexSpectrin tetramer formationChemical Cross-LinkingMembrane skeletonRecombinant domainsTetramer formation
2004
Update on the clinical spectrum and genetics of red blood cell membrane disorders.
Gallagher PG. Update on the clinical spectrum and genetics of red blood cell membrane disorders. Current Hematology Reports 2004, 3: 85-91. PMID: 14965483.Peer-Reviewed Original ResearchConceptsStructure/function relationshipsSignificant genetic heterogeneityPrecise genetic defectGenetic lociMolecular biologyRed blood cell membrane disordersSplicing mutationGene deletionNonsense mutationCell membraneFunction relationshipsGenetic heterogeneityGenetic defectsHereditary elliptocytosisMembrane disordersRed blood cell membraneBlood cell membranesHereditary pyropoikilocytosisMutationsBetter understandingErythrocyte membranesMembraneLociGeneticsBiology