2011
Refinement of the hereditary xerocytosis locus on chromosome 16q in a large Canadian kindred
Houston BL, Zelinski T, Israels SJ, Coghlan G, Chodirker BN, Gallagher PG, Houston DS, Zarychanski R. Refinement of the hereditary xerocytosis locus on chromosome 16q in a large Canadian kindred. Blood Cells Molecules And Diseases 2011, 47: 226-231. PMID: 21944700, DOI: 10.1016/j.bcmd.2011.08.001.Peer-Reviewed Original ResearchConceptsNormal hemoglobin levelsLarge CanadianProgressive iron loadingRed cell hemolysisCausative genetic mutationsHemoglobin levelsIndirect hyperbilirubinemiaAffected family membersClinical hallmarkHereditary xerocytosisMorphologic evaluationHemolytic processChromosome 16qTarget cellsOsmotic fragilityPhenotypic findingsGenetic mutationsDisease phenotypeCell hemolysisIron loadingFamily membersMode of inheritanceHemolysisHeterogeneous conditionCholelithiasisGenome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation
Pilon AM, Ajay SS, Kumar SA, Steiner LA, Cherukuri PF, Wincovitch S, Anderson SM, Mullikin J, Gallagher P, Hardison R, Margulies E, Bodine D. Genome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation. Blood 2011, 118: e139-e148. PMID: 21900194, PMCID: PMC3208289, DOI: 10.1182/blood-2011-05-355107.Peer-Reviewed Original ResearchConceptsErythroid Kruppel-like factorKruppel-like factorChIP-seqTranscription factorsGenome-wide ChIP-seqProgenitor cellsMouse erythroid progenitor cellsCell cycle regulatory pathwaysErythroid transcription factorsGeneral cell growthRNA-seq analysisErythroid progenitor cellsTranscriptional activatorGATA factorsIntragenic regionsErythrocyte differentiationRegulatory pathwaysNuclear distributionPromoter regionParallel sequencingInteractomeDifferentiated erythroblastsCell growthTAL1Little overlap
2000
Genomic organization and chromosomal localization of the murine 2 P domain potassium channel gene Kcnk8: conservation of gene structure in 2 P domain potassium channels
Bockenhauer D, Nimmakayalu M, Ward D, Goldstein S, Gallagher P. Genomic organization and chromosomal localization of the murine 2 P domain potassium channel gene Kcnk8: conservation of gene structure in 2 P domain potassium channels. Gene 2000, 261: 365-372. PMID: 11167025, DOI: 10.1016/s0378-1119(00)00492-3.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceChromosome MappingDNADNA, ComplementaryElectrophysiologyExonsGenesIn Situ Hybridization, FluorescenceIntronsMiceMolecular Sequence DataOocytesPhylogenyPotassium ChannelsPotassium Channels, Tandem Pore DomainProtein Structure, TertiaryRNA, ComplementarySequence Analysis, DNAXenopus laevisConceptsPotassium channel genesDomain potassium channelsChromosomal localizationGene structureOocyte expression systemCDNA sequenceXenopus laevis oocyte expression systemExpression systemChannel genesPotential transmembrane helicesIntron/exon boundariesSingle EF-hand motifOpen reading framePotassium channelsEF-hand motifsEvolutionary conservationGenomic organizationCellular chaperonesGenomic structureComposite cDNAPotential SH3Transmembrane helicesGenome databaseChromosomal genesReading frame
1995
cDNA Structure, Tissue-Specific Expression, and Chromosomal Localization of the Murine Band 7.2b Gene
Gallagher P, Romana M, Lieman J, Ward D. cDNA Structure, Tissue-Specific Expression, and Chromosomal Localization of the Murine Band 7.2b Gene. Blood 1995, 86: 359-365. PMID: 7540886, DOI: 10.1182/blood.v86.1.359.bloodjournal861359.Peer-Reviewed Original ResearchConceptsTissue-specific expressionSingle membrane-spanning domainMembrane-spanning domainsBp of cDNAOpen reading frameChromosomal localizationSignificant homologyReading frameCDNA structureHuman homologueAlpha-helixProtein structureBeta sheetAmino acidsErythrocyte membranesGenesProximal regionDatabase searchingProteinSitu hybridizationCDNADistal regionWider patternsSkeletal muscleExpression
1994
Localization of the human α-fodrin gene (SPTAN1) to 9q33→q34 by fluorescence in situ hybridization
Upender M, Gallagher PG, Moon RT, Ward DC, Forget BG. Localization of the human α-fodrin gene (SPTAN1) to 9q33→q34 by fluorescence in situ hybridization. Cytogenetic And Genome Research 1994, 66: 39-41. PMID: 8275706, DOI: 10.1159/000133660.Peer-Reviewed Original ResearchMeSH KeywordsCarrier ProteinsCell LineChromosome MappingChromosomes, Human, Pair 22Chromosomes, Human, Pair 9Gene LibraryHumansIn Situ Hybridization, FluorescenceLeukemia, Myelogenous, Chronic, BCR-ABL PositiveLymphocyte ActivationLymphocytesMicrofilament ProteinsMultigene FamilySpectrinTranslocation, GeneticTumor Cells, CulturedConceptsSitu hybridizationCell linesTranslocation breakpoint regionChronic myelogenous leukemia cell lineHuman chronic myelogenous leukemia cell lineSpectrin geneMyelogenous leukemia cell lineLeukemia cell linesGenesTranslocation breakpointsChromosomesBreakpoint regionHybridizationLociFluorescencePh1 chromosomeLinesPhiladelphia chromosomeK562BreakpointsLocalizationMembers
1993
The Gene for Human Erythrocyte Membrane Protein Band 7.2 (EPB72) Maps to 9q33-q34 Centromeric to the Philadelphia Chromosome Translocation Breakpoint Region
Gallagher P, Upender M, Ward D, Forget B. The Gene for Human Erythrocyte Membrane Protein Band 7.2 (EPB72) Maps to 9q33-q34 Centromeric to the Philadelphia Chromosome Translocation Breakpoint Region. Genomics 1993, 18: 167-169. PMID: 8276411, DOI: 10.1006/geno.1993.1449.Peer-Reviewed Original Research