2008
Insulator Elements in Erythrocyte Membrane Genes
Steiner L, Maksimova Y, Lin J, Owen A, Schulz V, Bodine D, Gallagher P. Insulator Elements in Erythrocyte Membrane Genes. Blood 2008, 112: 3584. DOI: 10.1182/blood.v112.11.3584.3584.Peer-Reviewed Original ResearchErythrocyte membrane protein genesPosition-effect variegationMembrane protein geneProtein geneChromatin domainsAnkyrin promoterDNA sequencesErythroid cellsInsulator elementsMapping protein-DNA interactionsHeterochromatin-mediated geneGenome-wide scaleGenomic DNA microarrayBinding of CTCFStage-specific transcriptsEnhancer-blocking functionProtein-DNA interactionsCopy number-dependent expressionTissue-specific expressionProtein gene expressionCTCF occupancyRepetitive DNAInsulator functionSeparate enhancersErythroid promoterChromatin Architecture and Transcription Factor Occupancy of Erythrocyte Membrane Genes Studied by Chromatin Immunoprecipitation on Microarrays (ChIP-chip)
Steiner L, Maksimova Y, Wong C, Schulz V, Gallagher P. Chromatin Architecture and Transcription Factor Occupancy of Erythrocyte Membrane Genes Studied by Chromatin Immunoprecipitation on Microarrays (ChIP-chip). Blood 2008, 112: 2436. DOI: 10.1182/blood.v112.11.2436.2436.Peer-Reviewed Original ResearchErythrocyte membrane protein genesNF-E2 siteMembrane protein geneGATA-1 sitesTranscriptional start siteChromatin architectureTranscription factor bindingPrimary erythroid cellsGATA-1Protein geneChromatin immunoprecipitationTranscription factorsErythroid cellsH3K4me3 enrichmentFlanking DNAFactor bindingDNA sequencesK562 cellsErythroid transcription factor GATA-1Mapping protein-DNA interactionsNon-erythroid cell linesTranscription factor GATA-1Quantitative ChIP analysisTranscription factor occupancyGenome-wide scale
1996
Genomic Organization and 5′-Flanking DNA Sequence of the Murine Stomatin Gene (Epb72)
Gallagher P, Turetsky T, Mentzer W. Genomic Organization and 5′-Flanking DNA Sequence of the Murine Stomatin Gene (Epb72). Genomics 1996, 34: 410-412. PMID: 8786142, DOI: 10.1006/geno.1996.0304.Peer-Reviewed Original ResearchConceptsStomatin geneDNA sequencesPotential DNA-binding proteinsIntegral membrane proteinsDNA-binding proteinsGenomic DNA sequencesHousekeeping gene promoterGenomic organizationExon structureGenomic structureChromosomal genesMembrane proteinsGene promoterConsensus sequenceGenomic DNAProtein structureGenesHereditary stomatocytosisSequenceProteinErythrocyte membranesStomatinCloningExonsPromoter
1992
A common type of the spectrin alpha I 46-50a-kD peptide abnormality in hereditary elliptocytosis and pyropoikilocytosis is associated with a mutation distant from the proteolytic cleavage site. Evidence for the functional importance of the triple helical model of spectrin.
Gallagher PG, Tse WT, Coetzer T, Lecomte MC, Garbarz M, Zarkowsky HS, Baruchel A, Ballas SK, Dhermy D, Palek J. A common type of the spectrin alpha I 46-50a-kD peptide abnormality in hereditary elliptocytosis and pyropoikilocytosis is associated with a mutation distant from the proteolytic cleavage site. Evidence for the functional importance of the triple helical model of spectrin. Journal Of Clinical Investigation 1992, 89: 892-898. PMID: 1541680, PMCID: PMC442935, DOI: 10.1172/jci115669.Peer-Reviewed Original ResearchConceptsProteolytic cleavage sitesAlpha-spectrin chainTriple helical modelCleavage siteHelix 2Helix-breaking proline substitutionsHereditary elliptocytosisAlpha iAlpha-spectrin geneAlpha-helical structureAmino-terminal sideHereditary pyropoikilocytosisHelical modelErythrocyte membrane proteinsLimited tryptic digestionMembrane proteinsSpectrin repeatsDNA sequencesSpectrin chainsHelix 3Position 207Leucine residuesFunctional importanceProline substitutionPoint mutations