1997
Early emergence of photoreceptor mosaicism in the primate retina revealed by a novel cone‐specific monoclonal antibody
Wikler K, Rakic P, Bhattacharyya N, Macleish P. Early emergence of photoreceptor mosaicism in the primate retina revealed by a novel cone‐specific monoclonal antibody. The Journal Of Comparative Neurology 1997, 377: 500-508. PMID: 9007188, DOI: 10.1002/(sici)1096-9861(19970127)377:4<500::aid-cne2>3.0.co;2-6.Peer-Reviewed Original ResearchConceptsPrimate retinaFetal retinaMonoclonal antibodiesAdult primate retinaEmbryonic day 80Opsin-positive conesOuter plexiform layerNovel monoclonal antibodyPopulation of conesShort-wavelength sensitive conesDouble-labeling experimentsSynaptic contactsPlexiform layerPhotoreceptor layerWavelength-sensitive conesMacaque monkeysSynaptic connectionsFetal ageRetinaDay 80Cone genesisCone opsinsImmunoreactivityAntibodiesInitial differentiation
1994
An array of early differentiating cones precedes the emergence of the photoreceptor mosaic in the fetal monkey retina.
Wikler K, Rakic P. An array of early differentiating cones precedes the emergence of the photoreceptor mosaic in the fetal monkey retina. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 6534-6538. PMID: 7912829, PMCID: PMC44237, DOI: 10.1073/pnas.91.14.6534.Peer-Reviewed Original ResearchConceptsFetal monkey retinaMonkey retinaRetinal ganglion cellsSubset of conesRed/green opsinImportant developmental markersGanglion cellsPrimate retinaGreen-sensitive conesDistinct antigensPhotoreceptor phenotypeRetinaMonoclonal antibodiesPhotoreceptor mosaicCone differentiationDevelopmental markersAntibodiesImmature regionsSame patternGreen opsinsAntigenSynaptogenesisSubset
1991
Relation of an array of early-differentiating cones to the photoreceptor mosaic in the primate retina
Wikler K, Rakic P. Relation of an array of early-differentiating cones to the photoreceptor mosaic in the primate retina. Nature 1991, 351: 397-400. PMID: 1827876, DOI: 10.1038/351397a0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationEye ProteinsGestational AgeImmunologic TechniquesMacaca mulattaPhotoreceptor CellsRetinaRod OpsinsConceptsSubset of conesCone subtypesAdult rhesus monkeysRetinal mosaicsBlue-sensitive conesPrimate retinaRetinal surfaceImmunocytochemical evidenceRhesus monkeysPhenotypic specificationInner segmentsConfocal laser microscopySubtypesRetinaWeeksUndifferentiated regionDiurnal primatesLaser microscopyMonthsSynapses
1990
Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates
Wikler K, Rakic P. Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. Journal Of Neuroscience 1990, 10: 3390-3401. PMID: 2145402, PMCID: PMC6570186, DOI: 10.1523/jneurosci.10-10-03390.1990.Peer-Reviewed Original ResearchConceptsRhesus monkey retinaMonkey retinaRhesus monkeysNew World owl monkeysOwl monkeysCone inner segmentsAbnormal colour visionBlue cone opsinDensity of conesColor visionBlue-sensitive conesDorsal retinaGreen cone opsinRetinaSpecific antibodiesCSA-1Inner segmentsMonkeysFoveaAntibodiesPhotoreceptor subtypesRed/greenPhotoreceptor mosaic: Number and distribution of rods and cones in the rhesus monkey retina
Wikler K, Williams R, Rakic P. Photoreceptor mosaic: Number and distribution of rods and cones in the rhesus monkey retina. The Journal Of Comparative Neurology 1990, 297: 499-508. PMID: 2384610, DOI: 10.1002/cne.902970404.Peer-Reviewed Original ResearchConceptsCone densityEntire retinal surfaceRods/mm2Rhesus monkey retinaCones/mm2Adult rhesus monkeysRetinal surface areaDensity of rodsDistribution of photoreceptorsNasal retinaRod densityMonkey retinaVideo-enhanced differential interference contrast opticsDistribution of rodsReceptor densityExtrafoveal retinaRetinal surfaceProportion of rodsRhesus monkeysScotopic conditionsRetinaArea 4Absolute numberRetinal developmentPhotopic systemHypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors.
Kuljis R, Rakic P. Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors. Proceedings Of The National Academy Of Sciences Of The United States Of America 1990, 87: 5303-5306. PMID: 2164675, PMCID: PMC54311, DOI: 10.1073/pnas.87.14.5303.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsAnimals, NewbornElectron Transport Complex IVMacaca mulattaNeuronsNeuropeptide YPhotoreceptor CellsRetinaVisual CortexConceptsLayers II/IIINeuropeptide YInterblob regionsVisual cortexAspiny stellate cellsCytochrome oxidase-rich blobsCytochrome oxidase blobsPrimate visual cortexRetinal ablationCerebral cortexRetinal neuronsDistinct physiological propertiesControl animalsStellate cellsOperated animalsMacaque monkeysSynaptic connectionsCortexPattern visionRetinal photoreceptorsNeuronsChemoarchitectonic organizationAbsence of cuesColor visionPhotoreceptors
1987
Synaptogenesis in the primate retina proceeds from the ganglion cells towards the photoreceptors
Nishimura Y, Rakic P. Synaptogenesis in the primate retina proceeds from the ganglion cells towards the photoreceptors. Neuroscience Research Supplements 1987, 6: s253-s268. PMID: 3317146, DOI: 10.1016/0921-8696(87)90021-1.Peer-Reviewed Original Research
1986
GABA and GAD immunoreactiviy of photoreceptor terminals in primate retina
Nishimura Y, Schwartz M, Rakic P. GABA and GAD immunoreactiviy of photoreceptor terminals in primate retina. Nature 1986, 320: 753-756. PMID: 3703002, DOI: 10.1038/320753a0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsGamma-Aminobutyric AcidGlutamate DecarboxylaseHumansImmune SeraMacacaPhotoreceptor CellsConceptsPhotoreceptor terminalsRhesus monkey retinaFirst-order synapsesGlutamic acid decarboxylasePresynaptic profilesΓ-aminobutyric acidMonkey retinaPerifoveal regionInhibitory neurotransmitterPrimate retinaCone terminalsHorizontal cellsSynaptic functionAcid decarboxylaseRetinaPhotoreceptor cellsVertebrate retinaUltrastructural characteristicsNeurotransmittersAntibodiesSynapsesPresent studyCellsGABAVisual signals