2022
A 300-fold conductivity increase in microbial cytochrome nanowires due to temperature-induced restructuring of hydrogen bonding networks
Dahl PJ, Yi SM, Gu Y, Acharya A, Shipps C, Neu J, O’Brien J, Morzan UN, Chaudhuri S, Guberman-Pfeffer MJ, Vu D, Yalcin SE, Batista VS, Malvankar NS. A 300-fold conductivity increase in microbial cytochrome nanowires due to temperature-induced restructuring of hydrogen bonding networks. Science Advances 2022, 8: eabm7193. PMID: 35544567, PMCID: PMC9094664, DOI: 10.1126/sciadv.abm7193.Peer-Reviewed Original ResearchTemperature-sensitive switchNanowires exhibitNanowiresSynthetic molecular wireTemperature-induced restructuringRaman spectroscopyRational engineeringCarrier lossRespiratory electronsExtracellular respirationSystematic tuningMicrometersMolecular wiresNetworkConductivity increasesNanometersLong-range conductionElectronsEngineeringSpectroscopyReduction potentialTuning
2012
Cover Picture: Supercapacitors Based on c‐Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria (ChemPhysChem 2/2012)
Malvankar N, Mester T, Tuominen M, Lovley D. Cover Picture: Supercapacitors Based on c‐Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria (ChemPhysChem 2/2012). ChemPhysChem 2012, 13: 365-365. DOI: 10.1002/cphc.201290005.Peer-Reviewed Original ResearchSustainable energy storage devicesSuperior electrochemical performanceElectron storage capacityEnergy storage devicesNanostructured networkProtein nanowiresPorous architectureC-type cytochromesElectrochemical performanceMetallic-like conductivityStorage devicesSupercapacitorsProtein engineeringGeobacter sulfurreducensStorage capacityRedox reactionsFirst demonstrationHydrous natureNanowiresNetworkLiving bacteriaSitu electrochemistryDevicesSulfurreducensEngineering