2022
Microbial biofilms as living photoconductors due to ultrafast electron transfer in cytochrome OmcS nanowires
Neu J, Shipps CC, Guberman-Pfeffer MJ, Shen C, Srikanth V, Spies JA, Kirchhofer ND, Yalcin SE, Brudvig GW, Batista VS, Malvankar NS. Microbial biofilms as living photoconductors due to ultrafast electron transfer in cytochrome OmcS nanowires. Nature Communications 2022, 13: 5150. PMID: 36071037, PMCID: PMC9452534, DOI: 10.1038/s41467-022-32659-5.Peer-Reviewed Original ResearchConceptsUltrafast electron transferElectron transferPhotoconductive atomic force microscopyFemtosecond transient absorption spectroscopyQuantum dynamics simulationsMicrobial electron transferAtomic force microscopyTransient absorption spectroscopyValue-added chemicalsIndividual nanowiresWhole-cell catalysisPhotoconductive materialForce microscopyCarrier densityCatalytic performanceNanowiresAbsorption spectroscopyPhotoactive proteinsEfficient productionPhotoconductorsSynthetic photosensitizersDynamics simulationsGeobacter sulfurreducensBiodegradable materialsElectronic interface
2021
Making protons tag along with electrons
Guberman-Pfeffer MJ, Malvankar NS. Making protons tag along with electrons. Biochemical Journal 2021, 478: 4093-4097. PMID: 34871365, DOI: 10.1042/bcj20210592.Peer-Reviewed Original ResearchConceptsExtracellular electron transferProtein engineering strategiesNanowiresBioelectronic applicationsElectron/proton transferEngineering strategiesPeriplasmic cytochromesSoil microbesBioenergetic machineryPili filamentsExtracellular acceptorsGeobacter sulfurreducensElectron transferRecent studiesHarsh environmentsOxidation of nutrientsAliphatic residuesElectron acceptorCellsOMCElectronsFermentationEnergy generationBiofuelsSulfurreducensStructure of Geobacter pili reveals secretory rather than nanowire behaviour
Gu Y, Srikanth V, Salazar-Morales AI, Jain R, O’Brien J, Yi SM, Soni RK, Samatey FA, Yalcin SE, Malvankar NS. Structure of Geobacter pili reveals secretory rather than nanowire behaviour. Nature 2021, 597: 430-434. PMID: 34471289, PMCID: PMC9127704, DOI: 10.1038/s41586-021-03857-w.Peer-Reviewed Original ResearchConceptsExtracellular electron transferType 4 piliElectron transferProtein nanowiresCryo-electron microscopyNanowiresNanowire behaviorGeobacter piliC-terminal residuesTranslocation machineryAssembly architectureLoss of secretionMajor phylaGeobacter speciesPrevious structural analysisSurface appendagesGeobacter sulfurreducensAromatic side chainsPiliPilAΠ stackingWidespread effectsBioelectronicsMicroorganismsFilaments
2016
A Simple and Low‐Cost Procedure for Growing Geobacter sulfurreducens Cell Cultures and Biofilms in Bioelectrochemical Systems
O'Brien JP, Malvankar NS. A Simple and Low‐Cost Procedure for Growing Geobacter sulfurreducens Cell Cultures and Biofilms in Bioelectrochemical Systems. Current Protocols In Microbiology 2016, 43: a.4k.1-a.4k.27. PMID: 27858972, PMCID: PMC5726868, DOI: 10.1002/cpmc.20.Peer-Reviewed Original ResearchConceptsAnaerobic microorganismsGlobal biogeochemical cyclingModel organismsBacterial cell cultureBiogeochemical cyclingGeobacter sulfurreducensAnaerobic environmentMicroorganismsCell culturesCentral roleProduction of bioenergyOrganismsEnvironmental processesBioelectrochemical systemsSulfurreducensLow-cost assemblyBiofilmsMajor hurdleNutrientsAssemblyCultivation
2015
Electronic Conductivity in Living Biofilms: Physical Meaning, Mechanisms, and Measurement Methods
Malvankar N, Lovley D. Electronic Conductivity in Living Biofilms: Physical Meaning, Mechanisms, and Measurement Methods. 2015, 211-248. DOI: 10.1002/9781119097426.ch7.Peer-Reviewed Original ResearchElectronic conductivityLong-range electron conductionDc electronic conductivityAC impedance spectroscopyDirect conductivity measurementIonic conductivityImpedance spectroscopyFuel cellsMicrobial fuel cellsElectronic insulatorElectron acceptorElectron conductionMechanism of conductivityFour-probe methodConductivity measurementsConductive propertiesBiofilm conductivityLiving biofilmMicrobial nanowiresInexpensive feedstockC-type cytochromesConductivityGeobacter sulfurreducensConductive filmsElectron flowFunctional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation
Yun J, Malvankar NS, Ueki T, Lovley DR. Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation. The ISME Journal: Multidisciplinary Journal Of Microbial Ecology 2015, 10: 310-320. PMID: 26140532, PMCID: PMC4737924, DOI: 10.1038/ismej.2015.113.Peer-Reviewed Original ResearchConceptsC-type cytochromesGeobacter spOuter-surface c-type cytochromesTight phylogenetic groupDissimilatory metal-reducing microorganismsProteomic studiesPhylogenetic groupsMetal-reducing microorganismsPhylogenetic clustersGenomic DNAFunctional analysisStrain M18Apparent functionClade 1Uranium bioremediationGeobacter sulfurreducensConductive piliGel separationCytochromeGenomeSpBioremediation experimentsCytochrome aPure cultureSubsurface environments
2013
Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production
Leang C, Malvankar N, Franks A, Nevin K, Lovley D. Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. Energy & Environmental Science 2013, 6: 1901-1908. DOI: 10.1039/c3ee40441b.Peer-Reviewed Original ResearchWild-type strainG. sulfurreducens genomeGeobacter sulfurreducensWild-type biofilmsCurrent-producing biofilmsSimple genetic manipulationProduction of piliPilZ domainGenetic manipulationStrain CL-1Charge transfer resistanceCL-1Conductive matrixMicrobial fuel cellsConductive biofilmsBioelectronic materialsPotential applicationsEnergy applicationsBiofilmsGreater conductivityBiofilm productionGraphite electrodeTransfer resistanceBiofilm propertiesSulfurreducens
2012
Cover Picture: Supercapacitors Based on c‐Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria (ChemPhysChem 2/2012)
Malvankar N, Mester T, Tuominen M, Lovley D. Cover Picture: Supercapacitors Based on c‐Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria (ChemPhysChem 2/2012). ChemPhysChem 2012, 13: 365-365. DOI: 10.1002/cphc.201290005.Peer-Reviewed Original ResearchSustainable energy storage devicesSuperior electrochemical performanceElectron storage capacityEnergy storage devicesNanostructured networkProtein nanowiresPorous architectureC-type cytochromesElectrochemical performanceMetallic-like conductivityStorage devicesSupercapacitorsProtein engineeringGeobacter sulfurreducensStorage capacityRedox reactionsFirst demonstrationHydrous natureNanowiresNetworkLiving bacteriaSitu electrochemistryDevicesSulfurreducensEngineering
2010
Bacterial biofilms: the powerhouse of a microbial fuel cell
Franks A, Malvankar N, Nevin K. Bacterial biofilms: the powerhouse of a microbial fuel cell. Biofuels 2010, 1: 589-604. DOI: 10.4155/bfs.10.25.Peer-Reviewed Original ResearchGenetic engineering studiesC-type cytochromesSpecialized biological processesDifferent bacterial speciesBiological processesSuch speciesBacterial speciesGeobacter sulfurreducensMicrobial fuel cellsBacterial biofilmsConductive biofilmsCell basisProton accumulationPure cultureSpeciesBiofilmsCellsFuel cellsElectron transferHigh current densityConsiderable distanceSulfurreducensCytochromeElectrode surfaceEngineering studies