2003
Interaction of DNA Polymerase I (Klenow Fragment) with the Single-Stranded Template beyond the Site of Synthesis †
Turner R, Grindley N, Joyce C. Interaction of DNA Polymerase I (Klenow Fragment) with the Single-Stranded Template beyond the Site of Synthesis †. Biochemistry 2003, 42: 2373-2385. PMID: 12600204, DOI: 10.1021/bi026566c.Peer-Reviewed Original Research
2002
Cryptic plasmids of Mycobacterium avium: Tn552 to the rescue
Kirby C, Waring A, Griffin T, Falkinham J, Grindley N, Derbyshire K. Cryptic plasmids of Mycobacterium avium: Tn552 to the rescue. Molecular Microbiology 2002, 43: 173-186. PMID: 11849545, DOI: 10.1046/j.1365-2958.2002.02729.x.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBlotting, SouthernDNA Transposable ElementsDNA, BacterialDNA, CircularMolecular Sequence DataMutagenesis, InsertionalMycobacterium aviumMycobacterium bovisMycobacterium smegmatisPlasmidsReplication OriginRestriction MappingSequence Analysis, DNASequence Homology, Nucleic AcidConceptsEssential genetic toolsCryptic plasmidGenetic toolsOpportunistic pathogen Mycobacterium aviumGenetic exploitationTransposon insertionConjugative relaxaseTransposition systemSelectable markerExtrachromosomal DNAGenetic analysisHost rangePlasmid genesPlasmid originBacterial speciesPlasmid establishmentCircular DNAPlasmidMycobacterium smegmatisGenesMycobacterial plasmidsDNAReplicationMycobacterium aviumRescue
2001
The basis of asymmetry in IS2 transposition
Lewis L, Gadura N, Greene M, Saby R, Grindley N. The basis of asymmetry in IS2 transposition. Molecular Microbiology 2001, 42: 887-901. PMID: 11737634, DOI: 10.1046/j.1365-2958.2001.02662.x.Peer-Reviewed Original Research
2000
Identification of Genes Encoding Exported Mycobacterium tuberculosis Proteins Using a Tn552′phoA In Vitro Transposition System
Braunstein M, Griffin T, Kriakov J, Friedman S, Grindley N, Jacobs W. Identification of Genes Encoding Exported Mycobacterium tuberculosis Proteins Using a Tn552′phoA In Vitro Transposition System. Journal Of Bacteriology 2000, 182: 2732-2740. PMID: 10781540, PMCID: PMC101980, DOI: 10.1128/jb.182.10.2732-2740.2000.Peer-Reviewed Original ResearchMeSH KeywordsAlkaline PhosphataseAmino Acid SequenceArtificial Gene FusionBacterial ProteinsBiological TransportCosmidsCyclin-Dependent KinasesDNA Transposable ElementsDNA, BacterialGenes, BacterialGenomic LibraryMolecular Sequence DataMutagenesis, InsertionalMycobacterium tuberculosisPlasmidsReplication OriginConceptsProtective immunityM. tuberculosisMycobacterium tuberculosis pathogenesisImmune responseTuberculosis pathogenesisMycobacterium tuberculosis proteinsM. tuberculosis databaseTuberculosisTuberculosis databasePathogenesisTuberculosis proteinsImmunityEnvelope-associated proteinsM. smegmatisProteinPeptides
1997
Two abundant intramolecular transposition products, resulting from reactions initiated at a single end, suggest that IS2 transposes by an unconventional pathway
Lewis L, Grindley N. Two abundant intramolecular transposition products, resulting from reactions initiated at a single end, suggest that IS2 transposes by an unconventional pathway. Molecular Microbiology 1997, 25: 517-529. PMID: 9302014, DOI: 10.1046/j.1365-2958.1997.4871848.x.Peer-Reviewed Original ResearchBacterial ProteinsBase SequenceBinding SitesCloning, MolecularDNA NucleotidyltransferasesDNA PrimersDNA Transposable ElementsDNA, BacterialDNA, CircularEscherichia coliEscherichia coli ProteinsMicroscopy, ElectronModels, GeneticMolecular Sequence DataNucleic Acid ConformationPolymerase Chain ReactionRecombinant Fusion ProteinsTransposases
1992
Binding of the IS903 transposase to its inverted repeat in vitro.
Derbyshire K, Grindley N. Binding of the IS903 transposase to its inverted repeat in vitro. The EMBO Journal 1992, 11: 3449-3455. PMID: 1324175, PMCID: PMC556880, DOI: 10.1002/j.1460-2075.1992.tb05424.x.Peer-Reviewed Original ResearchSide chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli.
Polesky A, Dahlberg M, Benkovic S, Grindley N, Joyce C. Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli. Journal Of Biological Chemistry 1992, 267: 8417-8428. PMID: 1569092, DOI: 10.1016/s0021-9258(18)42461-1.Peer-Reviewed Original Research
1991
Gamma delta transposase. Purification and analysis of its interaction with a transposon end
Wiater L, Grindley N. Gamma delta transposase. Purification and analysis of its interaction with a transposon end. Journal Of Biological Chemistry 1991, 266: 1841-1849. PMID: 1846366, DOI: 10.1016/s0021-9258(18)52370-x.Peer-Reviewed Original Research
1988
Gamma delta transposase and integration host factor bind cooperatively at both ends of gamma delta.
Wiater L, Grindley N. Gamma delta transposase and integration host factor bind cooperatively at both ends of gamma delta. The EMBO Journal 1988, 7: 1907-1911. PMID: 2844529, PMCID: PMC457184, DOI: 10.1002/j.1460-2075.1988.tb03024.x.Peer-Reviewed Original Research
1986
Replicative and conservative transposition in bacteria
Derbyshire K, Grindley N. Replicative and conservative transposition in bacteria. Cell 1986, 47: 325-327. PMID: 3021339, DOI: 10.1016/0092-8674(86)90586-6.Peer-Reviewed Original ResearchAnalysis of gamma delta resolvase mutants in vitro: evidence for an interaction between serine-10 of resolvase and site I of res.
Hatfull G, Grindley N. Analysis of gamma delta resolvase mutants in vitro: evidence for an interaction between serine-10 of resolvase and site I of res. Proceedings Of The National Academy Of Sciences Of The United States Of America 1986, 83: 5429-5433. PMID: 3016704, PMCID: PMC386300, DOI: 10.1073/pnas.83.15.5429.Peer-Reviewed Original ResearchConceptsSerine 10Resolvase mutantsRecombinational activitySite-specific recombination proteinsProtein-DNA complexesPosition 10Site-specific recombinationRecombination proteinsActive site serineMutant proteinsRecombinational crossover pointMutantsResolvaseRecombinational sitesLeucine changeSerineSite ICysteine changeGel electrophoresisSpecific defectsComplex formationCointegrate moleculeTransposon gamma deltaProteinDNA
1985
Genetic mapping and DNA sequence analysis of mutations in the polA gene of Escherichia coli
Joyce C, Fujii D, Laks H, Hughes C, Grindley N. Genetic mapping and DNA sequence analysis of mutations in the polA gene of Escherichia coli. Journal Of Molecular Biology 1985, 186: 283-293. PMID: 3910840, DOI: 10.1016/0022-2836(85)90105-6.Peer-Reviewed Original ResearchConceptsDNA sequence analysisDNA polymerase IThree-dimensional structurePolymerase ISequence analysisPolA geneSingle-subunit enzymeEscherichia coliEnzyme-DNA interactionsGenetic mappingDeletion mutantsSubunit enzymeMutant formsPrimary sequenceMutational changesBacteriophage lambdaExcellent modelPolA mutantsPolA mutationEnzymatic behaviorMutantsMutationsGenesDNAColiTranspositional Recombination in Prokaryotes
Grindley N, Reed R. Transpositional Recombination in Prokaryotes. Annual Review Of Biochemistry 1985, 54: 863-896. PMID: 2992361, DOI: 10.1146/annurev.bi.54.070185.004243.Peer-Reviewed Original Research
1984
Analysis of the γδ res site Sites required for site-specific recombination and gene expression
Wells R, Grindley N. Analysis of the γδ res site Sites required for site-specific recombination and gene expression. Journal Of Molecular Biology 1984, 179: 667-687. PMID: 6094833, DOI: 10.1016/0022-2836(84)90161-x.Peer-Reviewed Original ResearchReplicative and conservative transpositional recombination of insertion sequences.
Weinert T, Derbyshire K, Hughson F, Grindley N. Replicative and conservative transpositional recombination of insertion sequences. Cold Spring Harbor Symposia On Quantitative Biology 1984, 49: 251-60. PMID: 6099240, DOI: 10.1101/sqb.1984.049.01.029.Peer-Reviewed Original Research
1983
Insertion Sequence Duplication in Transpositional Recombination
Weinert T, Schaus N, Grindley N. Insertion Sequence Duplication in Transpositional Recombination. Science 1983, 222: 755-765. PMID: 6314502, DOI: 10.1126/science.6314502.Peer-Reviewed Original Research
1981
Transposon-mediated site-specific recombination in vitro: DNA cleavage and protein-DNA linkage at the recombination site
Reed R, Grindley N. Transposon-mediated site-specific recombination in vitro: DNA cleavage and protein-DNA linkage at the recombination site. Cell 1981, 25: 721-728. PMID: 6269756, DOI: 10.1016/0092-8674(81)90179-3.Peer-Reviewed Original ResearchConceptsSite-specific recombinationTransposable element gamma deltaDNA cleavageTnpR genePalindromic sequence 5'Intercistronic regionSequence 5DNA moleculesResolution siteResolvaseSame substrate moleculeRecombination sitesAbsence of Mg2Substrate moleculesGenesSame repliconRecombinationDNACleavageTransposonRes sitesSitesAnalysis of the structure and function of the kanamycin-resistance transposon Tn903.
Grindley N, Joyce C. Analysis of the structure and function of the kanamycin-resistance transposon Tn903. Cold Spring Harbor Symposia On Quantitative Biology 1981, 45 Pt 1: 125-33. PMID: 6271455, DOI: 10.1101/sqb.1981.045.01.021.Peer-Reviewed Original Research
1980
Genetic and DNA sequence analysis of the kanamycin resistance transposon Tn903.
Grindley N, Joyce C. Genetic and DNA sequence analysis of the kanamycin resistance transposon Tn903. Proceedings Of The National Academy Of Sciences Of The United States Of America 1980, 77: 7176-7180. PMID: 6261245, PMCID: PMC350464, DOI: 10.1073/pnas.77.12.7176.Peer-Reviewed Original Research
1978
IS1 insertion generates duplication of a nine base pair sequence at its target site
Grindley N. IS1 insertion generates duplication of a nine base pair sequence at its target site. Cell 1978, 13: 419-426. PMID: 350412, DOI: 10.1016/0092-8674(78)90316-1.Peer-Reviewed Original Research