2011
Single-molecule analysis reveals the molecular bearing mechanism of DNA strand exchange by a serine recombinase
Bai H, Sun M, Ghosh P, Hatfull GF, Grindley ND, Marko JF. Single-molecule analysis reveals the molecular bearing mechanism of DNA strand exchange by a serine recombinase. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 7419-7424. PMID: 21502527, PMCID: PMC3088605, DOI: 10.1073/pnas.1018436108.Peer-Reviewed Original ResearchMeSH KeywordsBiotinDigoxigeninDNA NucleotidyltransferasesDNA, SuperhelicalEscherichia coliPlasmidsRotationSerine
2006
Implications of structures of synaptic tetramers of γδ resolvase for the mechanism of recombination
Kamtekar S, Ho RS, Cocco MJ, Li W, Wenwieser SV, Boocock MR, Grindley ND, Steitz TA. Implications of structures of synaptic tetramers of γδ resolvase for the mechanism of recombination. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 10642-10647. PMID: 16807292, PMCID: PMC1483221, DOI: 10.1073/pnas.0604062103.Peer-Reviewed Original ResearchCrystallography, X-RayDNADNA NucleotidyltransferasesHumansMutant Chimeric ProteinsRecombination, GeneticTransposon Resolvases
1997
Site-specific recombination: Synapsis and strand exchange revealed
Grindley N. Site-specific recombination: Synapsis and strand exchange revealed. Current Biology 1997, 7: r608-r612. PMID: 9368738, DOI: 10.1016/s0960-9822(06)00314-9.Peer-Reviewed Original ResearchBinding SitesDNA NucleotidyltransferasesIntegrasesRecombinasesRecombination, GeneticStructure-Activity RelationshipTwo abundant intramolecular transposition products, resulting from reactions initiated at a single end, suggest that IS2 transposes by an unconventional pathway
Lewis L, Grindley N. Two abundant intramolecular transposition products, resulting from reactions initiated at a single end, suggest that IS2 transposes by an unconventional pathway. Molecular Microbiology 1997, 25: 517-529. PMID: 9302014, DOI: 10.1046/j.1365-2958.1997.4871848.x.Peer-Reviewed Original ResearchBacterial ProteinsBase SequenceBinding SitesCloning, MolecularDNA NucleotidyltransferasesDNA PrimersDNA Transposable ElementsDNA, BacterialDNA, CircularEscherichia coliEscherichia coli ProteinsMicroscopy, ElectronModels, GeneticMolecular Sequence DataNucleic Acid ConformationPolymerase Chain ReactionRecombinant Fusion ProteinsTransposases
1996
Cis preference of the IS 903 transposase is mediated by a combination of transposase instability and inefficient translation
Derbyshire K, Grindley N. Cis preference of the IS 903 transposase is mediated by a combination of transposase instability and inefficient translation. Molecular Microbiology 1996, 21: 1261-1272. PMID: 8898394, DOI: 10.1111/j.1365-2958.1996.tb02587.x.Peer-Reviewed Original ResearchMeSH KeywordsDNA NucleotidyltransferasesGene Expression RegulationMutationPlasmidsProtein BiosynthesisTranscriptional ActivationTransposasesConceptsClasses of mutationsLevel of transpositionDNA-binding proteinsCis-acting proteinsAmount of transposaseCis preferenceWild-type transposaseInefficient translation initiationSite of synthesisAmino acids 25Translation initiationTranslational initiationTransposase proteinTranslation efficiencyMutant geneGene expressionProtein instabilityTransposase geneInefficient translationProline substitutionTransposaseMutant transposaseMutationsProteinUnusual class
1995
DNA transposition: From a black box to a color monitor
Grindley N, Leschziner A. DNA transposition: From a black box to a color monitor. Cell 1995, 83: 1063-1066. PMID: 8548793, DOI: 10.1016/0092-8674(95)90132-9.Peer-Reviewed Original ResearchDNA NucleotidyltransferasesDNA Transposable ElementsDNA-Binding ProteinsProtein ConformationTransposasesCatalytic residues of gamma delta resolvase act in cis.
Boocock M, Zhu X, Grindley N. Catalytic residues of gamma delta resolvase act in cis. The EMBO Journal 1995, 14: 5129-5140. PMID: 7588641, PMCID: PMC394616, DOI: 10.1002/j.1460-2075.1995.tb00195.x.Peer-Reviewed Original ResearchBase SequenceBinding SitesCrossing Over, GeneticDNA NucleotidyltransferasesDNA Topoisomerases, Type IDNA Transposable ElementsGenetic Complementation TestModels, GeneticModels, MolecularMolecular Sequence DataPlasmidsRecombination, GeneticStructure-Activity RelationshipSubstrate SpecificityTransposasesThe tyrosine‐6 hydroxyl of γδ resolvase is not required for the DNA cleavage and rejoining reactions
Leschziner A, Boocock M, Grindley N. The tyrosine‐6 hydroxyl of γδ resolvase is not required for the DNA cleavage and rejoining reactions. Molecular Microbiology 1995, 15: 865-870. PMID: 7596288, DOI: 10.1111/j.1365-2958.1995.tb02356.x.Peer-Reviewed Original Research
1976
Effects of different alleles of the E. coli K12 polA gene on the replication of non-transferring plasmids
Grindley N, Kelley W. Effects of different alleles of the E. coli K12 polA gene on the replication of non-transferring plasmids. Molecular Genetics And Genomics 1976, 143: 311-318. PMID: 765763, DOI: 10.1007/bf00269409.Peer-Reviewed Original ResearchMeSH KeywordsAllelesChloramphenicolDNA NucleotidyltransferasesDNA ReplicationDrug Resistance, MicrobialEscherichia coliExtrachromosomal InheritancePhenotypePlasmidsTransduction, Genetic