2011
Single-molecule analysis reveals the molecular bearing mechanism of DNA strand exchange by a serine recombinase
Bai H, Sun M, Ghosh P, Hatfull GF, Grindley ND, Marko JF. Single-molecule analysis reveals the molecular bearing mechanism of DNA strand exchange by a serine recombinase. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 7419-7424. PMID: 21502527, PMCID: PMC3088605, DOI: 10.1073/pnas.1018436108.Peer-Reviewed Original Research
2002
Cryptic plasmids of Mycobacterium avium: Tn552 to the rescue
Kirby C, Waring A, Griffin T, Falkinham J, Grindley N, Derbyshire K. Cryptic plasmids of Mycobacterium avium: Tn552 to the rescue. Molecular Microbiology 2002, 43: 173-186. PMID: 11849545, DOI: 10.1046/j.1365-2958.2002.02729.x.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBlotting, SouthernDNA Transposable ElementsDNA, BacterialDNA, CircularMolecular Sequence DataMutagenesis, InsertionalMycobacterium aviumMycobacterium bovisMycobacterium smegmatisPlasmidsReplication OriginRestriction MappingSequence Analysis, DNASequence Homology, Nucleic AcidConceptsEssential genetic toolsCryptic plasmidGenetic toolsOpportunistic pathogen Mycobacterium aviumGenetic exploitationTransposon insertionConjugative relaxaseTransposition systemSelectable markerExtrachromosomal DNAGenetic analysisHost rangePlasmid genesPlasmid originBacterial speciesPlasmid establishmentCircular DNAPlasmidMycobacterium smegmatisGenesMycobacterial plasmidsDNAReplicationMycobacterium aviumRescue
2000
Identification of Genes Encoding Exported Mycobacterium tuberculosis Proteins Using a Tn552′phoA In Vitro Transposition System
Braunstein M, Griffin T, Kriakov J, Friedman S, Grindley N, Jacobs W. Identification of Genes Encoding Exported Mycobacterium tuberculosis Proteins Using a Tn552′phoA In Vitro Transposition System. Journal Of Bacteriology 2000, 182: 2732-2740. PMID: 10781540, PMCID: PMC101980, DOI: 10.1128/jb.182.10.2732-2740.2000.Peer-Reviewed Original ResearchMeSH KeywordsAlkaline PhosphataseAmino Acid SequenceArtificial Gene FusionBacterial ProteinsBiological TransportCosmidsCyclin-Dependent KinasesDNA Transposable ElementsDNA, BacterialGenes, BacterialGenomic LibraryMolecular Sequence DataMutagenesis, InsertionalMycobacterium tuberculosisPlasmidsReplication OriginConceptsProtective immunityM. tuberculosisMycobacterium tuberculosis pathogenesisImmune responseTuberculosis pathogenesisMycobacterium tuberculosis proteinsM. tuberculosis databaseTuberculosisTuberculosis databasePathogenesisTuberculosis proteinsImmunityEnvelope-associated proteinsM. smegmatisProteinPeptides
1999
Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity
Arnold P, Blake D, Grindley N, Boocock M, Stark W. Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. The EMBO Journal 1999, 18: 1407-1414. PMID: 10064606, PMCID: PMC1171230, DOI: 10.1093/emboj/18.5.1407.Peer-Reviewed Original Research
1996
Cis preference of the IS 903 transposase is mediated by a combination of transposase instability and inefficient translation
Derbyshire K, Grindley N. Cis preference of the IS 903 transposase is mediated by a combination of transposase instability and inefficient translation. Molecular Microbiology 1996, 21: 1261-1272. PMID: 8898394, DOI: 10.1111/j.1365-2958.1996.tb02587.x.Peer-Reviewed Original ResearchConceptsClasses of mutationsLevel of transpositionDNA-binding proteinsCis-acting proteinsAmount of transposaseCis preferenceWild-type transposaseInefficient translation initiationSite of synthesisAmino acids 25Translation initiationTranslational initiationTransposase proteinTranslation efficiencyMutant geneGene expressionProtein instabilityTransposase geneInefficient translationProline substitutionTransposaseMutant transposaseMutationsProteinUnusual class
1995
Catalytic residues of gamma delta resolvase act in cis.
Boocock M, Zhu X, Grindley N. Catalytic residues of gamma delta resolvase act in cis. The EMBO Journal 1995, 14: 5129-5140. PMID: 7588641, PMCID: PMC394616, DOI: 10.1002/j.1460-2075.1995.tb00195.x.Peer-Reviewed Original ResearchBase SequenceBinding SitesCrossing Over, GeneticDNA NucleotidyltransferasesDNA Topoisomerases, Type IDNA Transposable ElementsGenetic Complementation TestModels, GeneticModels, MolecularMolecular Sequence DataPlasmidsRecombination, GeneticStructure-Activity RelationshipSubstrate SpecificityTransposasesA functional analysis of the inverted repeat of the gamma delta transposable element.
May E, Grindley N. A functional analysis of the inverted repeat of the gamma delta transposable element. Journal Of Molecular Biology 1995, 247: 578-87. PMID: 7723015, DOI: 10.1006/jmbi.1995.0164.Peer-Reviewed Original ResearchConceptsIntegration host factorInverted repeatsBase pairsTransposable elementsTransposase bindingGroove contactsIHF siteReduced transposition activityTerminal inverted repeatsMinor groove contactsBase pair regionGamma delta transposaseBase pair stretchSusceptible to mutationsTransposon gamma deltaTn3 familyTransposition activityPoint mutantsTarget plasmidTransposition defectBinding regionMutationsBinding sitesBinding contactsHost factorsA functional analysis of the inverted repeat of the γδ transposable element
May E, Grindley N. A functional analysis of the inverted repeat of the γδ transposable element. Journal Of Molecular Biology 1995, 247: 578-587. DOI: 10.1016/s0022-2836(05)80139-1.Peer-Reviewed Original Research
1991
Resolvase‐catalysed reactions between res sites differing in the central dinucleotide of subsite I.
Stark W, Grindley N, Hatfull G, Boocock M. Resolvase‐catalysed reactions between res sites differing in the central dinucleotide of subsite I. The EMBO Journal 1991, 10: 3541-3548. PMID: 1655422, PMCID: PMC453083, DOI: 10.1002/j.1460-2075.1991.tb04918.x.Peer-Reviewed Original Research
1990
Cooperativity mutants of the γδ resolvase identify an essential interdimer interaction
Hughes R, Hatfull G, Rice P, Steitz T, Grindley N. Cooperativity mutants of the γδ resolvase identify an essential interdimer interaction. Cell 1990, 63: 1331-1338. PMID: 2175679, DOI: 10.1016/0092-8674(90)90428-h.Peer-Reviewed Original ResearchConceptsProtein-protein interactionsHigher-order protein-protein interactionsCooperativity mutantsSite-specific recombinaseGamma delta resolvaseMutant phenotypeResolvase mutantsNucleoprotein complexesCrystallographic tetramersResolvase dimersΓδ resolvaseResolvaseCooperative bindingMutantsDNARecombinationSide chainsRecombinaseProteinInteractionCointegrate intermediatePhenotypeRecombination reactionBindingTetramerIntegration host factor increases the transpositional immunity conferred by gamma delta ends
Wiater L, Grindley N. Integration host factor increases the transpositional immunity conferred by gamma delta ends. Journal Of Bacteriology 1990, 172: 4951-4958. PMID: 2168370, PMCID: PMC213150, DOI: 10.1128/jb.172.9.4951-4958.1990.Peer-Reviewed Original ResearchUncoupling of transpositional immunity from gamma delta transposition by a mutation at the end of gamma delta
Wiater L, Grindley N. Uncoupling of transpositional immunity from gamma delta transposition by a mutation at the end of gamma delta. Journal Of Bacteriology 1990, 172: 4959-4963. PMID: 2168371, PMCID: PMC213151, DOI: 10.1128/jb.172.9.4959-4963.1990.Peer-Reviewed Original ResearchThe two functional domains of gamma delta resolvase act on the same recombination site: implications for the mechanism of strand exchange.
Dröge P, Hatfull G, Grindley N, Cozzarelli N. The two functional domains of gamma delta resolvase act on the same recombination site: implications for the mechanism of strand exchange. Proceedings Of The National Academy Of Sciences Of The United States Of America 1990, 87: 5336-5340. PMID: 2164677, PMCID: PMC54318, DOI: 10.1073/pnas.87.14.5336.Peer-Reviewed Original ResearchConceptsDNA-protein complexesRecombination sitesSite-specific recombinationGamma delta resolvaseDNA exchangeCatalytic domainStrand exchangeFunctional domainsResolvaseResolvase subunitsDNA strandsRes sitesSynaptic complexDNAStrand breakageRecombinationReunion eventDomainSitesComplexesSubunitsStrandsBreakageSynaptosomesSaturation mutagenesis of the DNA site bound by the small carboxy‐terminal domain of gamma delta resolvase.
Rimphanitchayakit V, Grindley N. Saturation mutagenesis of the DNA site bound by the small carboxy‐terminal domain of gamma delta resolvase. The EMBO Journal 1990, 9: 719-725. PMID: 2155779, PMCID: PMC551726, DOI: 10.1002/j.1460-2075.1990.tb08165.x.Peer-Reviewed Original Research
1987
Helical phasing between DNA bends and the determination of bend direction
Salvo J, Grindley N. Helical phasing between DNA bends and the determination of bend direction. Nucleic Acids Research 1987, 15: 9771-9779. PMID: 2827112, PMCID: PMC306530, DOI: 10.1093/nar/15.23.9771.Peer-Reviewed Original ResearchThe γδ resolvase induces an unusual DNA structure at the recombinational crossover point
Hatfull G, Noble S, Grindley N. The γδ resolvase induces an unusual DNA structure at the recombinational crossover point. Cell 1987, 49: 103-110. PMID: 3030563, DOI: 10.1016/0092-8674(87)90760-4.Peer-Reviewed Original ResearchContacts between gamma delta resolvase and the gamma delta res site.
Falvey E, Grindley N. Contacts between gamma delta resolvase and the gamma delta res site. The EMBO Journal 1987, 6: 815-821. PMID: 3034611, PMCID: PMC553467, DOI: 10.1002/j.1460-2075.1987.tb04824.x.Peer-Reviewed Original Research
1984
Analysis of the γδ res site Sites required for site-specific recombination and gene expression
Wells R, Grindley N. Analysis of the γδ res site Sites required for site-specific recombination and gene expression. Journal Of Molecular Biology 1984, 179: 667-687. PMID: 6094833, DOI: 10.1016/0022-2836(84)90161-x.Peer-Reviewed Original Research
1983
Insertion Sequence Duplication in Transpositional Recombination
Weinert T, Schaus N, Grindley N. Insertion Sequence Duplication in Transpositional Recombination. Science 1983, 222: 755-765. PMID: 6314502, DOI: 10.1126/science.6314502.Peer-Reviewed Original ResearchConstruction of a plasmid that overproduces the large proteolytic fragment (Klenow fragment) of DNA polymerase I of Escherichia coli.
Joyce C, Grindley N. Construction of a plasmid that overproduces the large proteolytic fragment (Klenow fragment) of DNA polymerase I of Escherichia coli. Proceedings Of The National Academy Of Sciences Of The United States Of America 1983, 80: 1830-1834. PMID: 6340110, PMCID: PMC393703, DOI: 10.1073/pnas.80.7.1830.Peer-Reviewed Original ResearchConceptsDNA polymerase IOverproducing strainPolymerase IGene fusion techniquesLarge proteolytic fragmentCellular proteinsLac promoterGene fragmentsProtein structurePhage lambdaLeftward promoterEscherichia coliCarboxyl terminalPolymerase fragmentProteolytic fragmentsKlenow fragmentPromoterPlasmidPurification procedureFragmentsOverproductionExpressionI. MoreoverMechanistic studiesCloning