Featured Publications
A Curated Compendium of Transcriptomic Data for the Exploration of Neocortical Development.
Sonthalia S, Li G, Blanco XM, Casella A, Liu J, Stein-O'Brien G, Caffo B, Adkins S, Orvis J, Hertzano R, Mahurkar A, Gillis JA, Werner J, Ma S, Micali N, Sestan N, Rakic P, Baro GS, Ament SA, Colantuoni C. A Curated Compendium of Transcriptomic Data for the Exploration of Neocortical Development. BioRxiv 2024 PMID: 38464021, DOI: 10.1101/2024.02.26.581612.Peer-Reviewed Original ResearchIndividual variation in the emergence of anterior-to-posterior neural fates from human pluripotent stem cells
Kim S, Seo S, Stein-O’Brien G, Jaishankar A, Ogawa K, Micali N, Luria V, Karger A, Wang Y, Kim H, Hyde T, Kleinman J, Voss T, Fertig E, Shin J, Bürli R, Cross A, Brandon N, Weinberger D, Chenoweth J, Hoeppner D, Sestan N, Colantuoni C, McKay R. Individual variation in the emergence of anterior-to-posterior neural fates from human pluripotent stem cells. Stem Cell Reports 2024, 19: 1336-1350. PMID: 39151428, PMCID: PMC11411333, DOI: 10.1016/j.stemcr.2024.07.004.Peer-Reviewed Original ResearchHuman pluripotent stem cellsEarly mammalian developmentConsequences of variationPluripotent stem cellsTranscriptomic variationMammalian developmentTranscriptomic patternsTranscriptomic traitsReplicate linesMesendodermal lineagesNeural fateAdult tissuesLineagesHindbrain fateTranscriptional signatureTranscriptomic signaturesEarly eventLineage biasHuman pluripotent stem cell linesStem cellsFateIndividual variationAnterior to posterior structuresEpigenetic originCellsEarly Developmental Origins of Cortical Disorders Modeled in Human Neural Stem Cells.
Mato-Blanco X, Kim SK, Jourdon A, Ma S, Tebbenkamp ATN, Liu F, Duque A, Vaccarino FM, Sestan N, Colantuoni C, Rakic P, Santpere G, Micali N. Early Developmental Origins of Cortical Disorders Modeled in Human Neural Stem Cells. BioRxiv 2024 PMID: 38915580, DOI: 10.1101/2024.06.14.598925.Peer-Reviewed Original Research
2023
Molecular programs of regional specification and neural stem cell fate progression in macaque telencephalon
Micali N, Ma S, Li M, Kim S, Mato-Blanco X, Sindhu S, Arellano J, Gao T, Shibata M, Gobeske K, Duque A, Santpere G, Sestan N, Rakic P. Molecular programs of regional specification and neural stem cell fate progression in macaque telencephalon. Science 2023, 382: eadf3786. PMID: 37824652, PMCID: PMC10705812, DOI: 10.1126/science.adf3786.Peer-Reviewed Original Research
2021
Radial Glial Cells: New Views on Old Questions
Arellano JI, Morozov YM, Micali N, Rakic P. Radial Glial Cells: New Views on Old Questions. Neurochemical Research 2021, 46: 2512-2524. PMID: 33725233, PMCID: PMC8855517, DOI: 10.1007/s11064-021-03296-z.Peer-Reviewed Original ResearchConceptsGlial fibrillary acidic proteinRadial glial cellsNeuroepithelial cellsGFAP expressionFibrillary acidic proteinMigration of neuronsProcess of neurogenesisGlial featuresGlial cellsEmbryonic cerebrumCortical neurogenesisMacaque monkeysPial surfaceAcidic proteinEpithelial featuresBrain developmentNeurogenesisVentricular surfaceTight junctionsCerebrumNeuronsUltrastructural analysisFirst descriptionBrainVertebrate brain
2020
Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates
Micali N, Kim SK, Diaz-Bustamante M, Stein-O’Brien G, Seo S, Shin JH, Rash BG, Ma S, Wang Y, Olivares NA, Arellano JI, Maynard KR, Fertig EJ, Cross AJ, Bürli RW, Brandon NJ, Weinberger DR, Chenoweth JG, Hoeppner DJ, Sestan N, Rakic P, Colantuoni C, McKay RD. Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates. Cell Reports 2020, 31: 107599. PMID: 32375049, PMCID: PMC7357345, DOI: 10.1016/j.celrep.2020.107599.Peer-Reviewed Original ResearchConceptsNeural stem cellsNeuronal fateProliferative neural stem cellsStem cellsPluripotent linesTelencephalic fateRNA sequencingLineage tracingHuman neural stem cellsGlutamatergic excitatory neuronsMonkey brain sectionsNeuronal trajectoriesCell imagingCortical excitatoryCerebral cortexFateExcitatory neuronsBrain sectionsHuman telencephalonNeuropsychiatric disordersAcute transitionPluripotencyCellsCortexSequencingDissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs
Burke EE, Chenoweth JG, Shin JH, Collado-Torres L, Kim SK, Micali N, Wang Y, Colantuoni C, Straub RE, Hoeppner DJ, Chen HY, Sellers A, Shibbani K, Hamersky GR, Diaz Bustamante M, Phan BN, Ulrich WS, Valencia C, Jaishankar A, Price AJ, Rajpurohit A, Semick SA, Bürli RW, Barrow JC, Hiler DJ, Page SC, Martinowich K, Hyde TM, Kleinman JE, Berman KF, Apud JA, Cross AJ, Brandon NJ, Weinberger DR, Maher BJ, McKay RDG, Jaffe AE. Dissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs. Nature Communications 2020, 11: 462. PMID: 31974374, PMCID: PMC6978526, DOI: 10.1038/s41467-019-14266-z.Peer-Reviewed Original ResearchConceptsHuman induced pluripotent stem cellsNeural precursor cellsExpression dataSingle-cell expression dataNeuronal differentiationSequencing read alignmentsInduced pluripotent stem cellsEarly neuronal differentiationPluripotent stem cellsTranscriptomic resourcesIPSC donorNeuronal culturesSubclonal linesNeural differentiationTranscriptomic signaturesHuman neural precursor cellsNeuronal cellsStem cellsPrecursor cellsCell sortingGlobal patternsPowerful modelSubset of neuronsRead alignmentDifferentiation
2019
Gliogenesis in the outer subventricular zone promotes enlargement and gyrification of the primate cerebrum
Rash BG, Duque A, Morozov YM, Arellano JI, Micali N, Rakic P. Gliogenesis in the outer subventricular zone promotes enlargement and gyrification of the primate cerebrum. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 7089-7094. PMID: 30894491, PMCID: PMC6452694, DOI: 10.1073/pnas.1822169116.Peer-Reviewed Original ResearchConceptsOuter subventricular zoneSubventricular zoneWhite matterCompletion of neurogenesisSuperficial layers IISubcortical white matterUnderlying white matterProduction of astrocytesRadial glial cellsElaboration of dendritesCortical surface areaSuperficial neuronsCerebral neuronsCortical connectionsGlial cellsCerebral convolutionsDay 90Layers IIFormation of convolutionsMacaque monkeysRapid enlargementCerebrumNeuronal growthNeuronsEmbryonic day 90
2018
Metabolic regulation and glucose sensitivity of cortical radial glial cells
Rash BG, Micali N, Huttner AJ, Morozov YM, Horvath TL, Rakic P. Metabolic regulation and glucose sensitivity of cortical radial glial cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2018, 115: 10142-10147. PMID: 30224493, PMCID: PMC6176632, DOI: 10.1073/pnas.1808066115.Peer-Reviewed Original ResearchConceptsRadial glial cellsGlial cellsRGC fibersCortical radial glial cellsEmbryonic cortical slicesGestational obesityCerebral cortexCortical slicesMetabolic disturbancesCortical neurogenesisMetabolic supportBrain disordersAcute lossMitochondrial transportBrain developmentIntracellular CaPotential mechanismsHyperglycemiaMitochondrial functionGlucose sensitivityMiceStem cellsPrimary stem cellsPhysiological mechanismsCells
2014
FGF2 and Insulin Signaling Converge to Regulate Cyclin D Expression in Multipotent Neural Stem Cells
Adepoju A, Micali N, Ogawa K, Hoeppner DJ, McKay RD. FGF2 and Insulin Signaling Converge to Regulate Cyclin D Expression in Multipotent Neural Stem Cells. Stem Cells 2014, 32: 770-778. PMID: 24155149, DOI: 10.1002/stem.1575.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell ProliferationCyclin DDNAFemaleFibroblast Growth Factor 2InsulinIntracellular SpaceMiceMice, Inbred C57BLModels, BiologicalMultipotent Stem CellsNeural Stem CellsProtein BiosynthesisProto-Oncogene Proteins c-fosProto-Oncogene Proteins c-junSignal TransductionTranscription, GeneticConceptsNeural stem cellsMultipotent neural stem cellsStem cellsPost-transcriptional levelPI3K/Akt pathwayTyrosine kinase receptorsPhosphorylation of ERK1/2Cell statesInsulin signalProliferation controlCell lineagesFibroblast growth factorBasic fibroblast growth factorCyclin D expressionMultipotent cellsC-JunD mRNA levelsKinase receptorsNeural precursorsAkt pathwayCell expansionMultipotent natureCentral nervous systemDisease mechanismsC-fos
2011
Homeodomain transcription factor and tumor suppressor Prep1 is required to maintain genomic stability.
Iotti G, Longobardi E, Masella S, Dardaei L, De Santis F, Micali N, Blasi F. Homeodomain transcription factor and tumor suppressor Prep1 is required to maintain genomic stability. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: E314-22. PMID: 21715654, PMCID: PMC3141938, DOI: 10.1073/pnas.1105216108.Peer-Reviewed Original Research
2010
Down syndrome fibroblasts and mouse Prep1-overexpressing cells display increased sensitivity to genotoxic stress.
Micali N, Longobardi E, Iotti G, Ferrai C, Castagnaro L, Ricciardi M, Blasi F, Crippa MP. Down syndrome fibroblasts and mouse Prep1-overexpressing cells display increased sensitivity to genotoxic stress. Nucleic Acids Research 2010, 38: 3595-604. PMID: 20110257, PMCID: PMC2887940, DOI: 10.1093/nar/gkq019.Peer-Reviewed Original ResearchPrep1 (pKnox1)-deficiency leads to spontaneous tumor development in mice and accelerates EmuMyc lymphomagenesis: a tumor suppressor role for Prep1.
Longobardi E, Iotti G, Di Rosa P, Mejetta S, Bianchi F, Fernandez-Diaz LC, Micali N, Nuciforo P, Lenti E, Ponzoni M, Doglioni C, Caniatti M, Di Fiore PP, Blasi F. Prep1 (pKnox1)-deficiency leads to spontaneous tumor development in mice and accelerates EmuMyc lymphomagenesis: a tumor suppressor role for Prep1. Molecular Oncology 2010, 4: 126-34. PMID: 20106730, PMCID: PMC5527898, DOI: 10.1016/j.molonc.2010.01.001.Peer-Reviewed Original Research
2009
Prep1 directly regulates the intrinsic apoptotic pathway by controlling Bcl-XL levels.
Micali N, Ferrai C, Fernandez-Diaz LC, Blasi F, Crippa MP. Prep1 directly regulates the intrinsic apoptotic pathway by controlling Bcl-XL levels. Molecular And Cellular Biology 2009, 29: 1143-51. PMID: 19103748, PMCID: PMC2643814, DOI: 10.1128/MCB.01273-08.Peer-Reviewed Original Research
2006
Hypomorphic mutation of the TALE gene Prep1 (pKnox1) causes a major reduction of Pbx and Meis proteins and a pleiotropic embryonic phenotype.
Ferretti E, Villaescusa JC, Di Rosa P, Fernandez-Diaz LC, Longobardi E, Mazzieri R, Miccio A, Micali N, Selleri L, Ferrari G, Blasi F. Hypomorphic mutation of the TALE gene Prep1 (pKnox1) causes a major reduction of Pbx and Meis proteins and a pleiotropic embryonic phenotype. Molecular And Cellular Biology 2006, 26: 5650-62. PMID: 16847320, PMCID: PMC1592771, DOI: 10.1128/MCB.00313-06.Peer-Reviewed Original Research