2016
Identification of intestinal ion transport defects in microvillus inclusion disease
Kravtsov DV, Ahsan MK, Kumari V, van Ijzendoorn SC, Reyes-Mugica M, Kumar A, Gujral T, Dudeja PK, Ameen NA. Identification of intestinal ion transport defects in microvillus inclusion disease. AJP Gastrointestinal And Liver Physiology 2016, 311: g142-g155. PMID: 27229121, PMCID: PMC4967175, DOI: 10.1152/ajpgi.00041.2016.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingCaco-2 CellsChloride-Bicarbonate AntiportersCystic Fibrosis Transmembrane Conductance RegulatorEnterocytesGene Expression RegulationHumansIon TransportJejunumMalabsorption SyndromesMembrane Transport ProteinsMicrovilliMucolipidosesMyosin Heavy ChainsMyosin Type VPhenotypePhosphoproteinsRNA InterferenceSignal TransductionSodium-Hydrogen Exchanger 3Sodium-Hydrogen ExchangersSulfate TransportersTranscription FactorsTransfectionYAP-Signaling ProteinsConceptsMicrovillus inclusion diseaseStool lossVillus atrophyInclusion diseaseEnterocyte maturationMicrovillus inclusionsIntestinal fluid transportIntestinal cell modelIon transport defectImmunohistochemical stainingSecretory diarrheaBrush border defectsImmature enterocytesC2BBe cellsT84 cellsElectrophysiological approachesCFTR ion transportBB membraneLoss of MYO5BEnterocytesFunctional CFTRDiarrheaAtrophyFunction mutationsCFTR localization
2001
Anomalous apical plasma membrane phenotype in CK8-deficient mice indicates a novel role for intermediate filaments in the polarization of simple epithelia
Ameen N, Figueroa Y, Salas P. Anomalous apical plasma membrane phenotype in CK8-deficient mice indicates a novel role for intermediate filaments in the polarization of simple epithelia. Journal Of Cell Science 2001, 114: 563-575. PMID: 11171325, DOI: 10.1242/jcs.114.3.563.Peer-Reviewed Original ResearchConceptsIntermediate filamentsPolarized epithelial cellsApical membrane proteinsEpithelial cellsSyntaxin 3Apical domainFemale sterilityMembrane proteinsApical markerNovel functionGamma-tubulinNovel roleApical poleSimple epitheliaCell typesColorectal hyperplasiaCK intermediate filamentsNull micePhenotypeBasolateral levelsNecrotic cellsMembrane phenotypeCellsFilamentsCytoplasm of enterocytes
2000
Subcellular distribution of CFTR in rat intestine supports a physiologic role for CFTR regulation by vesicle traffic
Ameen N, van Donselaar E, Posthuma G, de Jonge H, McLaughlin G, Geuze H, Marino C, Peters P. Subcellular distribution of CFTR in rat intestine supports a physiologic role for CFTR regulation by vesicle traffic. Histochemistry And Cell Biology 2000, 114: 219-228. PMID: 11083465, DOI: 10.1007/s004180000167.Peer-Reviewed Original ResearchConceptsCystic fibrosis transmembrane conductance regulatorVesicle trafficSubcellular distributionVesicle insertionCAMP stimulationCAMP-activated chloride channelCryoimmunogold electron microscopyFibrosis transmembrane conductance regulatorApical plasma membraneTransmembrane conductance regulatorCultured intestinal cellsCFTR regulationCHE cellsPhysiologic roleVesicular compartmentsPlasma membraneApical redistributionConductance regulatorSubapical vesiclesCellular distributionChloride channelsSecretory cellsIntestinal cellsEpithelial cellsCells
1996
A delta F508 mutation in mouse cystic fibrosis transmembrane conductance regulator results in a temperature-sensitive processing defect in vivo.
French PJ, van Doorninck JH, Peters RH, Verbeek E, Ameen NA, Marino CR, de Jonge HR, Bijman J, Scholte BJ. A delta F508 mutation in mouse cystic fibrosis transmembrane conductance regulator results in a temperature-sensitive processing defect in vivo. Journal Of Clinical Investigation 1996, 98: 1304-1312. PMID: 8823295, PMCID: PMC507556, DOI: 10.1172/jci118917.Peer-Reviewed Original Research