2024
313 BEST4+ CFTR high expresser cells in normal rat are neuropods that sense and respond to luminal pH and are altered in dF508 CF intestine
Jin J, dos Reis D, Muiler C, Zagoren E, Donnelley M, Parsons D, Sumigray K, Ameen N. 313 BEST4+ CFTR high expresser cells in normal rat are neuropods that sense and respond to luminal pH and are altered in dF508 CF intestine. Journal Of Cystic Fibrosis 2024, 23: s167. DOI: 10.1016/s1569-1993(24)01153-6.Peer-Reviewed Original Research
2000
Cellular localization of the cystic fibrosis transmembrane conductance regulator in mouse intestinal tract
Ameen N, Alexis J, Salas P. Cellular localization of the cystic fibrosis transmembrane conductance regulator in mouse intestinal tract. Histochemistry And Cell Biology 2000, 114: 69-75. PMID: 10959824, DOI: 10.1007/s004180000164.Peer-Reviewed Original ResearchConceptsMouse intestinal tractCystic fibrosisIntestinal tractCystic fibrosis transmembrane conductance regulatorSmall intestinal obstructionSevere gastrointestinal diseasePathophysiology of CFMouse model systemFibrosis transmembrane conductance regulatorVillus distributionTransmembrane conductance regulatorIntestinal obstructionDifferent phenotypic expressionsCF intestineGastrointestinal diseasesBicarbonate secretionTransgenic miceHuman CF diseaseSmall intestineDisease expressionImmunoblot techniqueLethal obstructionMouse intestineMiceConductance regulator