2020
Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus
Jin SC, Dong W, Kundishora AJ, Panchagnula S, Moreno-De-Luca A, Furey CG, Allocco AA, Walker RL, Nelson-Williams C, Smith H, Dunbar A, Conine S, Lu Q, Zeng X, Sierant MC, Knight JR, Sullivan W, Duy PQ, DeSpenza T, Reeves BC, Karimy JK, Marlier A, Castaldi C, Tikhonova IR, Li B, Peña HP, Broach JR, Kabachelor EM, Ssenyonga P, Hehnly C, Ge L, Keren B, Timberlake AT, Goto J, Mangano FT, Johnston JM, Butler WE, Warf BC, Smith ER, Schiff SJ, Limbrick DD, Heuer G, Jackson EM, Iskandar BJ, Mane S, Haider S, Guclu B, Bayri Y, Sahin Y, Duncan CC, Apuzzo MLJ, DiLuna ML, Hoffman EJ, Sestan N, Ment LR, Alper SL, Bilguvar K, Geschwind DH, Günel M, Lifton RP, Kahle KT. Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nature Medicine 2020, 26: 1754-1765. PMID: 33077954, PMCID: PMC7871900, DOI: 10.1038/s41591-020-1090-2.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusPoor neurodevelopmental outcomesPost-surgical patientsCerebrospinal fluid accumulationNeural stem cell biologyGenetic disruptionWhole-exome sequencingPrimary pathomechanismEarly brain developmentNeurodevelopmental outcomesHigh morbidityCSF diversionMutation burdenFluid accumulationBrain ventriclesCH casesBrain developmentDe novo mutationsPatientsExome sequencingCSF dynamicsDisease mechanismsHydrocephalusNovo mutationsCell types
2018
Human Genetics and Molecular Mechanisms of Congenital Hydrocephalus
Furey CG, Zeng X, Dong W, Jin SC, Choi J, Timberlake AT, Dunbar AM, Allocco AA, Günel M, Lifton RP, Kahle KT. Human Genetics and Molecular Mechanisms of Congenital Hydrocephalus. World Neurosurgery 2018, 119: 441-443. PMID: 30205212, DOI: 10.1016/j.wneu.2018.09.018.Peer-Reviewed Original ResearchDe Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus
Furey CG, Choi J, Jin SC, Zeng X, Timberlake AT, Nelson-Williams C, Mansuri MS, Lu Q, Duran D, Panchagnula S, Allocco A, Karimy JK, Khanna A, Gaillard JR, DeSpenza T, Antwi P, Loring E, Butler WE, Smith ER, Warf BC, Strahle JM, Limbrick DD, Storm PB, Heuer G, Jackson EM, Iskandar BJ, Johnston JM, Tikhonova I, Castaldi C, López-Giráldez F, Bjornson RD, Knight JR, Bilguvar K, Mane S, Alper SL, Haider S, Guclu B, Bayri Y, Sahin Y, Apuzzo MLJ, Duncan CC, DiLuna ML, Günel M, Lifton RP, Kahle KT. De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus. Neuron 2018, 99: 302-314.e4. PMID: 29983323, PMCID: PMC7839075, DOI: 10.1016/j.neuron.2018.06.019.Peer-Reviewed Original ResearchMeSH KeywordsCohort StudiesExomeExome SequencingFemaleHumansHydrocephalusMaleMutationNeural Stem CellsPatched-1 ReceptorPedigreeTranscription FactorsConceptsCongenital hydrocephalusNeural stem cell fateHuman congenital hydrocephalusDamaging de novoCerebrospinal fluid homeostasisSubstantial morbidityCH patientsTherapeutic ramificationsSignificant burdenBrain ventriclesCH pathogenesisNeural tube developmentFluid homeostasisDe novo mutationsExome sequencingAdditional probandsHydrocephalusPathogenesisNovo mutationsNovo duplicationProbandsDe novoCell fateMorbidityPatients
2014
CLP1 Founder Mutation Links tRNA Splicing and Maturation to Cerebellar Development and Neurodegeneration
Schaffer AE, Eggens VR, Caglayan AO, Reuter MS, Scott E, Coufal NG, Silhavy JL, Xue Y, Kayserili H, Yasuno K, Rosti RO, Abdellateef M, Caglar C, Kasher PR, Cazemier JL, Weterman MA, Cantagrel V, Cai N, Zweier C, Altunoglu U, Satkin NB, Aktar F, Tuysuz B, Yalcinkaya C, Caksen H, Bilguvar K, Fu XD, Trotta CR, Gabriel S, Reis A, Gunel M, Baas F, Gleeson JG. CLP1 Founder Mutation Links tRNA Splicing and Maturation to Cerebellar Development and Neurodegeneration. Cell 2014, 157: 651-663. PMID: 24766810, PMCID: PMC4128918, DOI: 10.1016/j.cell.2014.03.049.Peer-Reviewed Original ResearchConceptsPre-tRNA cleavagePolyadenylation factor INull zebrafishTRNA splicingMultifunctional kinaseTRNA maturationMature tRNAEndonuclease complexMutant proteinsKinase activityOxidative stress-induced reductionInduced neuronsNeuronal developmentCell survivalIndependent pedigreesPatient cellsConsanguineous familyCerebellar neurodegenerationTRNACerebellar developmentNeurodegenerative diseasesMaturationNeurodegenerationStress-induced reductionFactor I
2012
Intracranial Aneurysm Risk Locus 5q23.2 Is Associated with Elevated Systolic Blood Pressure
Gaál EI, Salo P, Kristiansson K, Rehnström K, Kettunen J, Sarin AP, Niemelä M, Jula A, Raitakari OT, Lehtimäki T, Eriksson JG, Widen E, Günel M, Kurki M, von und zu Fraunberg M, Jääskeläinen JE, Hernesniemi J, Järvelin MR, Pouta A, , Newton-Cheh C, Salomaa V, Palotie A, Perola M. Intracranial Aneurysm Risk Locus 5q23.2 Is Associated with Elevated Systolic Blood Pressure. PLOS Genetics 2012, 8: e1002563. PMID: 22438818, PMCID: PMC3305343, DOI: 10.1371/journal.pgen.1002563.Peer-Reviewed Original ResearchMeSH KeywordsAdultBlood PressureChromosomes, Human, Pair 5Cohort StudiesFemaleFinlandGenetic Predisposition to DiseaseGenome-Wide Association StudyHumansIntracranial AneurysmMaleMiddle AgedMuscle ProteinsMyocytes, Smooth MusclePolymorphism, Single NucleotideRisk FactorsTranscription FactorsZinc FingersConceptsSystolic blood pressureBlood pressureSystolic BPRisk factorsIntracranial aneurysmsElevated systolic blood pressurePopulation-based Finnish cohortsDiastolic blood pressureHigher systolic BPMean arterial pressureTraditional risk factorsVascular smooth muscle cellsStrong risk factorCommon risk factorsQuantitative outcome variablesVascular wall structureSmooth muscle cellsGenome-wide association studiesArterial pressureCerebral arteryPulse pressureFinnish cohortComplex diseasesMuscle cellsRisk alleles