2022
Signaling network model of cardiomyocyte morphological changes in familial cardiomyopathy
Khalilimeybodi A, Riaz M, Campbell S, Omens J, McCulloch A, Qyang Y, Saucerman J. Signaling network model of cardiomyocyte morphological changes in familial cardiomyopathy. Journal Of Molecular And Cellular Cardiology 2022, 174: 1-14. PMID: 36370475, PMCID: PMC10230857, DOI: 10.1016/j.yjmcc.2022.10.006.Peer-Reviewed Original Research
2020
Efficient Differentiation of Human Induced Pluripotent Stem Cells into Endothelial Cells under Xenogeneic-free Conditions for Vascular Tissue Engineering
Luo J, Shi X, Lin Y, Yuan Y, Kural MH, Wang J, Ellis MW, Anderson CW, Zhang SM, Riaz M, Niklason LE, Qyang Y. Efficient Differentiation of Human Induced Pluripotent Stem Cells into Endothelial Cells under Xenogeneic-free Conditions for Vascular Tissue Engineering. Acta Biomaterialia 2020, 119: 184-196. PMID: 33166710, PMCID: PMC8133308, DOI: 10.1016/j.actbio.2020.11.007.Peer-Reviewed Original ResearchConceptsVascular tissue engineeringTissue engineeringSmall-diameter TEVGsDynamic bioreactor systemShear stressBioreactor systemCell alignmentVascular graftsXenogeneic-free conditionsEngineeringEndothelializationTEVGsApplicationsEndothelial cellsConditionsHuman induced pluripotent stem cellsAnimal-derived reagentsXenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering
Luo J, Lin Y, Shi X, Li G, Kural MH, Anderson CW, Ellis MW, Riaz M, Tellides G, Niklason LE, Qyang Y. Xenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering. Acta Biomaterialia 2020, 119: 155-168. PMID: 33130306, PMCID: PMC8168373, DOI: 10.1016/j.actbio.2020.10.042.Peer-Reviewed Original ResearchConceptsVascular tissue engineeringTissue-engineered vascular graftsTissue engineeringComparable mechanical strengthVascular smooth muscle cellsMechanical strengthSmooth muscle cellsPolyglycolic acid scaffoldsTechnology one stepBiodegradable polyglycolic acid (PGA) scaffoldsXenogeneic-free conditionsAnimal-derived reagentsMuscle cellsVSMC differentiationImmunodeficient mouse modelEngineeringVascular graftsOne-stepStem cellsPluripotent stem cellsMouse modelCollagen depositionComparable capacityBlood vesselsAcid scaffolds
2019
Modular design of a tissue engineered pulsatile conduit using human induced pluripotent stem cell-derived cardiomyocytes
Park J, Anderson CW, Sewanan LR, Kural MH, Huang Y, Luo J, Gui L, Riaz M, Lopez CA, Ng R, Das SK, Wang J, Niklason L, Campbell SG, Qyang Y. Modular design of a tissue engineered pulsatile conduit using human induced pluripotent stem cell-derived cardiomyocytes. Acta Biomaterialia 2019, 102: 220-230. PMID: 31634626, PMCID: PMC7227659, DOI: 10.1016/j.actbio.2019.10.019.Peer-Reviewed Original ResearchConceptsSingle-ventricle cardiac defectsHuman umbilical arteryPluripotent stem cell-derived cardiomyocytesStem cell-derived cardiomyocytesFontan procedureSurgical interventionSVD patientsCell-derived cardiomyocytesFontan conduitTherapeutic potentialEngineered Heart TissueVascular conduitsCongenital disorderDesign strategyVariety of complicationsEfficient electrical conductivitySingle ventricle heartPrimary cardiac fibroblastsFontan circulationHeart failureCorrective surgeryUmbilical arteryPulmonary circulationBiodegradable materialsPulmonary system