2022
Human biodistribution and radiation dosimetry of the demyelination tracer [18F]3F4AP
Brugarolas P, Wilks M, Noel J, Kaiser J, Vesper D, Ramos-Torres K, Guehl N, Macdonald-Soccorso M, Sun Y, Rice P, Yokell D, Lim R, Normandin M, El Fakhri G. Human biodistribution and radiation dosimetry of the demyelination tracer [18F]3F4AP. European Journal Of Nuclear Medicine And Molecular Imaging 2022, 50: 344-351. PMID: 36197499, PMCID: PMC9816249, DOI: 10.1007/s00259-022-05980-w.Peer-Reviewed Original ResearchConceptsRadiation dosimetryTime-activity curvesAdverse eventsEffective doseMultiple bed positionsComprehensive metabolic panelNonhuman primatesHealthy human volunteersNo adverse eventsDynamic PET scansVoltage-gated potassiumAnimal models of neurological diseasesNonhuman primate studiesModels of neurological diseasesHuman biodistributionAverage effective doseMetabolic panelDosimetryOLINDA softwareHealthy volunteersUrinary bladderPET scansDemyelinating lesionsBed positionAnimal modelsIncreased Macrophage-Specific Arterial Infiltration Relates to Noncalcified Plaque and Systemic Immune Activation in People With Human Immunodeficiency Virus
Toribio M, Wilks M, Hedgire S, Lu M, Cetlin M, Wang M, Alhallak I, Durbin C, White K, Wallis Z, Schnittman S, Stanley T, El-Fakhri G, Lee H, Autissier P, Zanni M, Williams K, Grinspoon S. Increased Macrophage-Specific Arterial Infiltration Relates to Noncalcified Plaque and Systemic Immune Activation in People With Human Immunodeficiency Virus. The Journal Of Infectious Diseases 2022, 226: 1823-1833. PMID: 35856671, PMCID: PMC10205602, DOI: 10.1093/infdis/jiac301.Peer-Reviewed Original ResearchConceptsHuman immunodeficiency virusAtherosclerotic cardiovascular diseaseAortic plaque volumeSystemic immune activationArterial infiltrationImmune activationImmunodeficiency virusPlaque volumeHistory of clinical ASCVDCD4+/CD8+ T-cell ratioHuman immunodeficiency virus statusCD8+ T cellsMarkers of immune activationClinical atherosclerotic cardiovascular diseasePersistent immune activationT cell ratioAtherosclerotic cardiovascular disease riskT cellsImmune phenotypeNoncalcified plaqueSystemic markersASCVD riskPWHCardiovascular diseaseUptake volume
2021
Near-Infrared Fluorescence Imaging of Carotid Plaques in an Atherosclerotic Murine Model
Wu X, Ulumben A, Long S, Katagiri W, Wilks M, Yuan H, Cortese B, Yang C, Kashiwagi S, Choi H, Normandin M, Fakhri G, Zaman R. Near-Infrared Fluorescence Imaging of Carotid Plaques in an Atherosclerotic Murine Model. Biomolecules 2021, 11: 1753. PMID: 34944397, PMCID: PMC8698491, DOI: 10.3390/biom11121753.Peer-Reviewed Original Research
2020
Positron annihilation localization by nanoscale magnetization
Gholami Y, Yuan H, Wilks M, Josephson L, El Fakhri G, Normandin M, Kuncic Z. Positron annihilation localization by nanoscale magnetization. Scientific Reports 2020, 10: 20262. PMID: 33219274, PMCID: PMC7680104, DOI: 10.1038/s41598-020-76980-9.Peer-Reviewed Original ResearchConceptsNanoscale magnetsSpatial resolution of PET imagesImproved dose localizationPositron emitting sourcesResolution of PET imagesPositron emission tomography instrumentationSpatial resolutionPositron emission tomographyAnnihilation quantaPhoton pairsPositron rangeDose localizationPositron annihilationCharged particlesOrtho-positroniumAnnihilationSuperparamagnetic iron oxide nanoparticlesCancer theranostic strategyPositron emission tomography scanPositronElectronic placesImage blurringPET imagingPET-MRITreatment outcomesA Radio-Nano-Platform for T1/T2 Dual-Mode PET-MR Imaging
Gholami Y, Yuan H, Wilks M, Maschmeyer R, Normandin M, Josephson L, Fakhri G, Kuncic Z. A Radio-Nano-Platform for T1/T2 Dual-Mode PET-MR Imaging. International Journal Of Nanomedicine 2020, 15: 1253-1266. PMID: 32161456, PMCID: PMC7049573, DOI: 10.2147/ijn.s241971.Peer-Reviewed Original ResearchConceptsLine spread functionPET-MR imagingSignal-to-noise ratioFull-width half-maximum (FWHMPET-MRHalf-maximum (FWHMSpatial resolutionTransmission electron microscopyImage quality gainSimultaneous positron emission tomographyContrast-enhanced diagnostic imagingAtom adsorptionPhantom imagesPositron emission tomographySpatial resolution of MRHybrid PET-MRRadio-isotopesSpread functionMulti-modal imaging techniquesSensitivity of positron emission tomographyMagnetic resonanceCo-registeredTransmission electron microscopy analysisSuper paramagnetic iron oxide nanoparticlesContrast agents
2019
Assessing the interactions between radiotherapy and antitumour immunity
Grassberger C, Ellsworth S, Wilks M, Keane F, Loeffler J. Assessing the interactions between radiotherapy and antitumour immunity. Nature Reviews Clinical Oncology 2019, 16: 729-745. PMID: 31243334, DOI: 10.1038/s41571-019-0238-9.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsCheckpoint inhibitorsIntroduction of immune checkpoint inhibitorsTherapy-induced immune responsesLong-term tumor controlImmune responsePre-existing immune responsesImmune response to radiotherapyInteraction of immunotherapyResponse to radiotherapyAdvanced-stage diseaseRadiation-induced immunosuppressionImmune cell dynamicsSite of diseaseIndividualized treatment approachPatient levelAntitumour immunityRadiotherapy regimensTumor controlTreatment of cancerIncrease response ratesRadiotherapyImmunotherapySerum biomarkersClinical data
2018
Development and Application of FASA, a Model for Quantifying Fatty Acid Metabolism Using Stable Isotope Labeling
Argus J, Wilks M, Zhou Q, Hsieh W, Khialeeva E, Hoi X, Bui V, Xu S, Yu A, Wang E, Herschman H, Williams K, Bensinger S. Development and Application of FASA, a Model for Quantifying Fatty Acid Metabolism Using Stable Isotope Labeling. Cell Reports 2018, 25: 2919-2934.e8. PMID: 30517876, PMCID: PMC6432944, DOI: 10.1016/j.celrep.2018.11.041.Peer-Reviewed Original ResearchConceptsFatty acid metabolismHomeostasis of fatty acidsCellular fatty acid contentCellular fatty acid metabolismAcid metabolismMovement of fatty acidsPolyunsaturated fatty acid poolStable isotope labelingFatty acidsFatty acid homeostasisElongation pathwayFatty acid poolAcid homeostasisMetabolic stepsContribution of synthesisAcid poolPro-inflammatory stimuliFatty acid contentIsotope labelingInflammatory signalingAcid contentMetabolismCellsElongationAcidHeat-induced radiolabeling and fluorescence labeling of Feraheme nanoparticles for PET/SPECT imaging and flow cytometry
Yuan H, Wilks M, Normandin M, El Fakhri G, Kaittanis C, Josephson L. Heat-induced radiolabeling and fluorescence labeling of Feraheme nanoparticles for PET/SPECT imaging and flow cytometry. Nature Protocols 2018, 13: 392-412. PMID: 29370158, PMCID: PMC5966297, DOI: 10.1038/nprot.2017.133.Peer-Reviewed Original Research
2017
Application of a Novel CD206+ Macrophage-Specific Arterial Imaging Strategy in HIV-Infected Individuals
Zanni M, Toribio M, Wilks M, Lu M, Burdo T, Walker J, Autissier P, Foldyna B, Stone L, Martin A, Cope F, Abbruzzese B, Brady T, Hoffmann U, Williams K, El-Fakhri G, Grinspoon S. Application of a Novel CD206+ Macrophage-Specific Arterial Imaging Strategy in HIV-Infected Individuals. The Journal Of Infectious Diseases 2017, 215: 1264-1269. PMID: 28204544, PMCID: PMC5853590, DOI: 10.1093/infdis/jix095.Peer-Reviewed Original ResearchMeSH KeywordsAortaAtherosclerosisCase-Control StudiesCross-Sectional StudiesDextransHIV InfectionsHumansLectins, C-TypeLymph NodesMacrophagesMaleMannansMannose ReceptorMannose-Binding LectinsMiddle AgedPlaque, AtheroscleroticRadiopharmaceuticalsReceptors, Cell SurfaceRegression AnalysisSingle Photon Emission Computed Tomography Computed TomographyTechnetium Tc 99m PentetateUnited StatesConceptsSingle-photon emission computed tomography/computed tomographyFirst-in-human dataNon-HIV-infected subjectsAortic plaque volumeHIV-infected subjectsHIV-infected individualsMacrophages ex vivoComputed tomographic angiographyCD206+ macrophagesTomography/computed tomographyTomographic angiographyImaging techniquesTechnetium TcHIV statusPlaque volumeCardiovascular diseaseHIVImaging strategiesCD206In vivo applicationsSubjectsTilmanoceptAngiographyMacrophagesTomography
2015
Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling
York AG, Williams KJ, Argus JP, Zhou QD, Brar G, Vergnes L, Gray EE, Zhen A, Wu NC, Yamada DH, Cunningham CR, Tarling EJ, Wilks MQ, Casero D, Gray DH, Yu AK, Wang ES, Brooks DG, Sun R, Kitchen SG, Wu TT, Reue K, Stetson DB, Bensinger SJ. Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling. Cell 2015, 163: 1716-1729. PMID: 26686653, PMCID: PMC4783382, DOI: 10.1016/j.cell.2015.11.045.Peer-Reviewed Original ResearchConceptsImport of cholesterolI interferonType I IFNsSTING-dependent mannerCholesterol biosynthetic pathwayI IFNsCombination of biosynthesisBiosynthetic fluxBiosynthetic pathwayLong-chain fatty acidsIsotope tracer analysisMetabolic shiftMetabolic pathwaysType I interferonCholesterol biosynthesisLipid requirementsChain fatty acidsInnate immunityBiosynthesisFatty acidsPool sizePathwayMechanistic studiesViral challengeFree cholesterolModulation of PICALM Levels Perturbs Cellular Cholesterol Homeostasis
Mercer J, Argus J, Crabtree D, Keenan M, Wilks M, Ashley J, Bensinger S, Lavau C, Wechsler D. Modulation of PICALM Levels Perturbs Cellular Cholesterol Homeostasis. PLOS ONE 2015, 10: e0129776. PMID: 26075887, PMCID: PMC4467867, DOI: 10.1371/journal.pone.0129776.Peer-Reviewed Original ResearchConceptsSingle nucleotide polymorphismsGenome-wide association studiesClathrin-mediated endocytosisCellular cholesterol homeostasisGene expression studiesExpression of genesPICALM expressionHeterologous proteinsEncode proteinsAssociation studiesPICALMNucleotide polymorphismsChromosomal translocationsExpressed proteinsCholesterol biosynthesisModulate macroautophagyCholesterol homeostasisBiological rolePathway analysisFlow cytometry analysisLDLR expressionLDL receptorLevels of LDLR expressionAlzheimer's diseasePool size
2013
An Essential Requirement for the SCAP/SREBP Signaling Axis to Protect Cancer Cells from Lipotoxicity
Williams K, Argus J, Zhu Y, Wilks M, Marbois B, York A, Kidani Y, Pourzia A, Akhavan D, Lisiero D, Komisopoulou E, Henkin A, Soto H, Chamberlain B, Vergnes L, Jung M, Torres J, Liau L, Christofk H, Prins R, Mischel P, Reue K, Graeber T, Bensinger S. An Essential Requirement for the SCAP/SREBP Signaling Axis to Protect Cancer Cells from Lipotoxicity. Cancer Research 2013, 73: 2850-2862. PMID: 23440422, PMCID: PMC3919498, DOI: 10.1158/0008-5472.can-13-0382-t.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell CycleCell Line, TumorCell ProliferationFatty Acid SynthasesGene Expression ProfilingGene Expression Regulation, NeoplasticHumansIntracellular Signaling Peptides and ProteinsMembrane ProteinsMiceMice, Inbred NODModels, StatisticalNeoplasm TransplantationNeoplasmsSignal TransductionStearoyl-CoA DesaturaseSterolsConceptsSterol regulatory element-binding proteinsFatty acid synthesisSREBP activityCellular growthFatty acid poolKey transcriptional regulatorCancer cellsFatty acid desaturationAcid synthesisAcid poolElement-binding proteinMetabolic flux analysisTranscriptional regulatorsLipid biosynthesisNovel mechanistic explanationStearoyl-CoA desaturase-1Fatty acid synthase activityCancer metabolismCancer cell growthSignaling AxisCell growthFlux analysisSynthase activityDesaturase 1Lipid profiling