2024
Mitochondrial heteroplasmy improves risk prediction for myeloid neoplasms
Hong Y, Pasca S, Shi W, Puiu D, Lake N, Lek M, Ru M, Grove M, Prizment A, Joshu C, Platz E, Guallar E, Arking D, Gondek L. Mitochondrial heteroplasmy improves risk prediction for myeloid neoplasms. Nature Communications 2024, 15: 10133. PMID: 39578475, PMCID: PMC11584845, DOI: 10.1038/s41467-024-54443-3.Peer-Reviewed Original ResearchConceptsClonal hematopoiesis of indeterminate potentialClonal hematopoiesisVariant allele fractionHeteroplasmic variantsIndeterminate potentialMyeloid neoplasmsHeteroplasmyMultiple mutationsAllele fractionMutationsHigh-risk groupPathogenic risk factorsMarkersRisk score modelDeleteriousnessSpliceosomeHematologic malignanciesRisk stratificationNeoplasm developmentNeoplasmsNeoplasm incidenceRisk factorsVariantsMitochondrial Heteroplasmy Is a Novel Predictor of Chronic Lymphocytic Leukemia Risk
Pasca S, Hong Y, Shi W, Puiu D, Lake N, Lek M, Guallar E, Arking D, Gondek L. Mitochondrial Heteroplasmy Is a Novel Predictor of Chronic Lymphocytic Leukemia Risk. Blood 2024, 144: 4054-4054. DOI: 10.1182/blood-2024-210250.Peer-Reviewed Original ResearchMitochondrial heteroplasmyClonal hematopoiesis of indeterminate potentialMtDNA heteroplasmyWhole-exome sequencing dataSomatic mutationsPresence of somatic mutationsExome sequencing dataCancer-associated genesClonal hematopoiesisClonal expansionVariant allele frequencyAssociated with myeloid malignanciesMtDNA variantsMitochondrial DNAPresence of mutationsSequence dataUK Biobank (UKBBiologically significant roleDeleterious mutationsHeteroplasmyChronic lymphocytic leukemia riskAllele frequenciesOncogenic transformationMitochondrial functionMyeloid genesQuantifying constraint in the human mitochondrial genome
Lake N, Ma K, Liu W, Battle S, Laricchia K, Tiao G, Puiu D, Ng K, Cohen J, Compton A, Cowie S, Christodoulou J, Thorburn D, Zhao H, Arking D, Sunyaev S, Lek M. Quantifying constraint in the human mitochondrial genome. Nature 2024, 635: 390-397. PMID: 39415008, DOI: 10.1038/s41586-024-08048-x.Peer-Reviewed Original ResearchMitochondrial genomeDeleterious variationMtDNA mutator modelHuman mitochondrial genomeGenome Aggregation DatabaseMtDNA variationMtDNA variantsMitochondrial DNANoncoding regionsMitochondrial proteinsRRNA geneGenetic variationMtDNAThree-dimensional structureMutation modelPathogenic variationDisease relevanceAggregation DatabaseGenomeLarge-scale population datasetRRNAConstrained sitesGenesTRNAPopulation datasetsSaturation mutagenesis-reinforced functional assays for disease-related genes
Ma K, Huang S, Ng K, Lake N, Joseph S, Xu J, Lek A, Ge L, Woodman K, Koczwara K, Cohen J, Ho V, O'Connor C, Brindley M, Campbell K, Lek M. Saturation mutagenesis-reinforced functional assays for disease-related genes. Cell 2024, 187: 6707-6724.e22. PMID: 39326416, PMCID: PMC11568926, DOI: 10.1016/j.cell.2024.08.047.Peer-Reviewed Original ResearchDisease-related genesDisease-causing genetic variantsGenome-wide resolutionMutation scanning methodsSingle-nucleotide variantsDeep mutational scanning methodFunctional assaysDisease genesComputational predictorsSaturation mutagenesisHuman geneticsGenetic variantsGenesVariantsSmurfAssayMutagenesisLARGE1GeneticsDisease severityHigh-throughput assays to assess variant effects on disease
Ma K, Gauthier L, Cheung F, Huang S, Lek M. High-throughput assays to assess variant effects on disease. Disease Models & Mechanisms 2024, 17: dmm050573. PMID: 38940340, PMCID: PMC11225591, DOI: 10.1242/dmm.050573.Peer-Reviewed Original ResearchConceptsDeep mutational scanningGenetic variantsRare disease diagnosticsRare genetic variantsDisease mechanismsHigh-throughput assaySequencing effortsInvestigation of variantsMutational scanningModel cell lineVariant effectsMolecular toolsCell linesCell survival rateFunctional assaysDrug resistanceDisease diagnosticsDisease-relevant assaysVariantsClinical case reportBiological mechanismsAssayCase reportClinical reportsSurvival rate
2023
Flavones provide resistance to DUX4-induced toxicity via an mTor-independent mechanism
Cohen J, Huang S, Koczwara K, Woods K, Ho V, Woodman K, Arbiser J, Daman K, Lek M, Emerson C, DeSimone A. Flavones provide resistance to DUX4-induced toxicity via an mTor-independent mechanism. Cell Death & Disease 2023, 14: 749. PMID: 37973788, PMCID: PMC10654915, DOI: 10.1038/s41419-023-06257-2.Peer-Reviewed Original ResearchConceptsMTOR-independent mechanismsFacioscapulohumeral muscular dystrophyDUX4 transcriptsDUX4 activityMultiple signal transduction pathwaysSignal transduction pathwaysTherapeutic developmentDUX4 proteinDUX4 expressionTransduction pathwaysPolyadenylation sitesChromosome 4DUX4 geneMechanisms of toxicityAutophagy pathwayExpression of ULK1DUX4Cellular autophagyCell deathRelevant pathwaysMuscular dystrophyMolecular methodsPathwaySkeletal muscleTranscriptsP299 Over-expression of FKRP in heart induces myocarditis and dilated cardiomyopathy in LGMD2I/R9 mice
Huang S, Ma K, Cohen J, Ho V, Xu J, Gauthier L, O'Connor C, Ge L, Woodman K, Lek M. P299 Over-expression of FKRP in heart induces myocarditis and dilated cardiomyopathy in LGMD2I/R9 mice. Neuromuscular Disorders 2023, 33: s118. DOI: 10.1016/j.nmd.2023.07.209.Peer-Reviewed Original ResearchGene replacement therapyReplacement therapySkeletal muscleFKRP geneLeft ventricular cavity sizeEvidence of myocarditisHigh expressionLow ejection fractionVentricular cavity sizeAutosomal recessive disorderCardiac involvementEjection fractionInflammatory infiltrationCardiac statusCardiac outputFatal cardiotoxicityFatal myocarditisDosed miceInclusion criteriaHeart sectionsMouse modelDystrophic miceDystrophic pathologyFKRP mutationsPatients
2017
Improving genetic diagnosis in Mendelian disease with transcriptome sequencing
Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S, Foley AR, Bolduc V, Waddell LB, Sandaradura SA, O’Grady G, Estrella E, Reddy HM, Zhao F, Weisburd B, Karczewski KJ, O’Donnell-Luria A, Birnbaum D, Sarkozy A, Hu Y, Gonorazky H, Claeys K, Joshi H, Bournazos A, Oates EC, Ghaoui R, Davis MR, Laing NG, Topf A, Consortium G, Kang PB, Beggs AH, North KN, Straub V, Dowling JJ, Muntoni F, Clarke NF, Cooper ST, Bönnemann CG, MacArthur DG. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Science Translational Medicine 2017, 9 PMID: 28424332, PMCID: PMC5548421, DOI: 10.1126/scitranslmed.aal5209.Peer-Reviewed Original ResearchConceptsTranscriptome sequencingRNA-seqCurrent diagnostic ratePrior genetic analysisTranscript level changesTriple-helical domainDeep intronic regionsWhole-genome sequencingSplice-altering variantsInterpretation of variantsRepeat motifsGenomic analysisHelical domainMendelian disease diagnosisGenetic analysisMendelian diseasesIntronic regionsSkeletal muscle samplesSequencingRare disease diagnosisIntronic mutationOverall diagnosis rateStandard diagnostic approachRare muscle disorderComplementary diagnostic tool
2016
Analysis of protein-coding genetic variation in 60,706 humans
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria A, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536: 285-291. PMID: 27535533, PMCID: PMC5018207, DOI: 10.1038/nature19057.Peer-Reviewed Original ResearchConceptsGenetic variationProtein-coding genetic variationProtein-coding genesDNA sequence dataHuman genetic diversityHuman genetic variationDNA sequence changesHuman disease phenotypesCandidate disease-causing variantsClasses of mutationsExome Aggregation ConsortiumProtein-truncating variantsMutational recurrenceStrong selectionGenetic diversitySequence dataDiverse ancestryDisease-causing variantsSequence changesSequence variantsGenesDisease phenotypeFunctional interpretationVariantsDirect evidencePatterns of genic intolerance of rare copy number variation in 59,898 human exomes
Ruderfer DM, Hamamsy T, Lek M, Karczewski KJ, Kavanagh D, Samocha KE, Daly M, MacArthur D, Fromer M, Purcell S. Patterns of genic intolerance of rare copy number variation in 59,898 human exomes. Nature Genetics 2016, 48: 1107-1111. PMID: 27533299, PMCID: PMC5042837, DOI: 10.1038/ng.3638.Peer-Reviewed Original ResearchConceptsGenic copy number variantsHuman genetic variationExome Aggregation ConsortiumRare copy number variationsCopy number variationsCopy number variantsExome sequencing dataGenetic variationGenic intoleranceHuman exomeSequencing dataPersonal genomesNumber variationsNumber variantsGenomeIntegrated databaseExomeVariationVariantsConsortiumDiagnosis and etiology of congenital muscular dystrophy: We are halfway there
O'Grady GL, Lek M, Lamande SR, Waddell L, Oates EC, Punetha J, Ghaoui R, Sandaradura SA, Best H, Kaur S, Davis M, Laing NG, Muntoni F, Hoffman E, MacArthur DG, Clarke NF, Cooper S, North K. Diagnosis and etiology of congenital muscular dystrophy: We are halfway there. Annals Of Neurology 2016, 80: 101-111. PMID: 27159402, DOI: 10.1002/ana.24687.Peer-Reviewed Original ResearchConceptsMuscle biopsyImmunohistochemical analysisGenetic diagnosisCongenital muscular dystrophy patientsFirst-line toolCandidate gene sequencingCongenital myasthenic syndromeCongenital muscular dystrophyMuscular dystrophy patientsAnn NeurolMyasthenic syndromeUndiagnosed patientsCMD patientsCongenital myopathyLarge cohortProbable diagnosisPatientsGene sequencingClinical phenotypeDystrophy patientsLaminin α2BiopsyDiagnosisChromosomal microarrayCohortQuantifying prion disease penetrance using large population control cohorts
Minikel EV, Vallabh SM, Lek M, Estrada K, Samocha KE, Sathirapongsasuti JF, McLean CY, Tung JY, Yu LP, Gambetti P, Blevins J, Zhang S, Cohen Y, Chen W, Yamada M, Hamaguchi T, Sanjo N, Mizusawa H, Nakamura Y, Kitamoto T, Collins SJ, Boyd A, Will RG, Knight R, Ponto C, Zerr I, Kraus TF, Eigenbrod S, Giese A, Calero M, de Pedro-Cuesta J, Haïk S, Laplanche JL, Bouaziz-Amar E, Brandel JP, Capellari S, Parchi P, Poleggi A, Ladogana A, O’Donnell-Luria A, Karczewski KJ, Marshall JL, Boehnke M, Laakso M, Mohlke KL, Kähler A, Chambert K, McCarroll S, Sullivan PF, Hultman CM, Purcell SM, Sklar P, van der Lee SJ, Rozemuller A, Jansen C, Hofman A, Kraaij R, van Rooij JG, Ikram MA, Uitterlinden AG, van Duijn CM, Consortium E, Daly MJ, MacArthur DG. Quantifying prion disease penetrance using large population control cohorts. Science Translational Medicine 2016, 8: 322ra9. PMID: 26791950, PMCID: PMC4774245, DOI: 10.1126/scitranslmed.aad5169.Peer-Reviewed Original ResearchConceptsPrion protein genePopulation control cohortPrion disease casesHealthy older individualsPrion protein expressionControl cohortLifetime riskTherapeutic suppressionDisease casesTruncating variantsDisease-causing genotypesOlder individualsBenign variantsDisease prevalenceProtein expressionDisease penetranceDiseaseMissense variantsPrion diseasesControl exomesDisease susceptibilityImpact of variantsGenetic variantsRiskPenetrance
2015
Use of Whole-Exome Sequencing for Diagnosis of Limb-Girdle Muscular Dystrophy: Outcomes and Lessons Learned
Ghaoui R, Cooper ST, Lek M, Jones K, Corbett A, Reddel SW, Needham M, Liang C, Waddell LB, Nicholson G, O’Grady G, Kaur S, Ong R, Davis M, Sue CM, Laing NG, North KN, MacArthur DG, Clarke NF. Use of Whole-Exome Sequencing for Diagnosis of Limb-Girdle Muscular Dystrophy: Outcomes and Lessons Learned. JAMA Neurology 2015, 72: 1424-1432. PMID: 26436962, DOI: 10.1001/jamaneurol.2015.2274.Peer-Reviewed Original ResearchConceptsLGMD-related genesLimb-girdle muscular dystrophyWhole-exome sequencingMyopathy genesBiopsy specimensDiagnostic rateMutations of CHD7Follow-up screeningMuscular dystrophyAccurate clinical examinationLikely pathogenic mutationsMuscle biopsy specimensTubular aggregate myopathyCongenital myasthenic syndromeGenetic diagnosisDiagnostic success rateNeuromuscular clinicMuscle weaknessMyopathic changesClinical examinationHistopathological resultsAncillary investigationsMyasthenic syndromeCommon causeDiagnostic yieldEffect of predicted protein-truncating genetic variants on the human transcriptome
Rivas MA, Pirinen M, Conrad DF, Lek M, Tsang EK, Karczewski KJ, Maller JB, Kukurba KR, DeLuca DS, Fromer M, Ferreira PG, Smith KS, Zhang R, Zhao F, Banks E, Poplin R, Ruderfer DM, Purcell SM, Tukiainen T, Minikel EV, Stenson PD, Cooper DN, Huang KH, Sullivan TJ, Nedzel J, Consortium T, Consortium T, Bustamante CD, Li JB, Daly MJ, Guigo R, Donnelly P, Ardlie K, Sammeth M, Dermitzakis ET, McCarthy MI, Montgomery SB, Lappalainen T, MacArthur DG, Segre A, Young T, Gelfand E, Trowbridge C, Ward L, Kheradpour P, Iriarte B, Meng Y, Palmer C, Esko T, Winckler W, Hirschhorn J, Kellis M, Getz G, Shablin A, Li, Zhou Y, Nobel A, Rusyn I, Wright F, Battle A, Mostafavi S, Mele M, Reverter F, Goldmann J, Koller D, Gamazon E, Im H, Konkashbaev A, Nicolae D, Cox N, Flutre T, Wen X, Stephens M, Pritchard J, Tu Z, Zhang B, Huang T, Long Q, Lin L, Yang J, Zhu J, Liu J, Brown A, Mestichelli B, Tidwell D, Lo E, Salvatore M, Shad S, Thomas J, Lonsdale J, Choi R, Karasik E, Ramsey K, Moser M, Foster B, Gillard B, Syron J, Fleming J, Magazine H, Hasz R, Walters G, Bridge J, Miklos M, Sullivan S, Barker L, Traino H, Mosavel M, Siminoff L, Valley D, Rohrer D, Jewel S, Branton P, Sobin L, Barcus M, Qi L, Hariharan P, Wu S, Tabor D, Shive C, Smith A, Buia S, Undale A, Robinson K, Roche N, Valentino K, Britton A, Burges R, Bradbury D, Hambright K, Seleski J, Korzeniewski G, Erickson K, Marcus Y, Tejada J, Taherian M, Lu C, Robles B, Basile M, Mash D, Volpi S, Struewing J, Temple G, Boyer J, Colantuoni D, Little R, Koester S, Carithers L, Moore H, Guan P, Compton C, Sawyer S, Demchok J, Vaught J, Rabiner C, Lockhart N, Friedlander M, Hoen P, Monlong J, Gonzàlez-Porta M, Kurbatova N, Griebel T, Barann M, Wieland T, Greger L, van Iterson M, Almlof J, Ribeca P, Pulyakhina I, Esser D, Giger T, Tikhonov A, Sultan M, Bertier G, Lizano E, Buermans H, Padioleau I, Schwarzmayr T, Karlberg O, Ongen H, Kilpinen H, Beltran S, Gut M, Kahlem K, Amstislavskiy V, Stegle O, Flicek P, Strom T, Lehrach H, Schreiber S, Sudbrak R, Carracedo A, Antonarakis S, Hasler R, Syvanen A, van Ommen G, Brazma A, Meitinger T, Rosenstiel P, Gut I, Estivill X. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science 2015, 348: 666-669. PMID: 25954003, PMCID: PMC4537935, DOI: 10.1126/science.1261877.Peer-Reviewed Original ResearchConceptsGenotype-Tissue ExpressionGenetic variantsProtein-truncating variantsEffects of variantsDosage compensationClass of variantsTranscript decayGene functionTranscriptome dataHuman transcriptomeGenetic variationGEUVADIS projectGene inactivationSplice junctionsGenome interpretationTranscriptome effectsFunctional interpretationClinical genome interpretationFunctional effectsPositional effectsImproved predictive modelVariantsTranscriptomeProfound effectInactivation
2014
The Challenge of Next Generation Sequencing in the Context of Neuromuscular Diseases
Lek M, MacArthur D. The Challenge of Next Generation Sequencing in the Context of Neuromuscular Diseases. Journal Of Neuromuscular Diseases 2014, 1: 135-149. PMID: 27858772, DOI: 10.3233/jnd-140032.Peer-Reviewed Original Research
2012
The uncertain road towards genomic medicine
MacArthur DG, Lek M. The uncertain road towards genomic medicine. Trends In Genetics 2012, 28: 303-305. PMID: 22658726, DOI: 10.1016/j.tig.2012.05.001.Peer-Reviewed Original Research