2024
Gene body DNA hydroxymethylation restricts the magnitude of transcriptional changes during aging
Occean J, Yang N, Sun Y, Dawkins M, Munk R, Belair C, Dar S, Anerillas C, Wang L, Shi C, Dunn C, Bernier M, Price N, Kim J, Cui C, Fan J, Bhattacharyya M, De S, Maragkakis M, de Cabo R, Sidoli S, Sen P. Gene body DNA hydroxymethylation restricts the magnitude of transcriptional changes during aging. Nature Communications 2024, 15: 6357. PMID: 39069555, PMCID: PMC11284234, DOI: 10.1038/s41467-024-50725-y.Peer-Reviewed Original ResearchConceptsTissue-specific functionsDNA hydroxymethylationMagnitude of transcriptional changesAlternative splicing eventsMagnitude of gene expression changesTissue-specific genesGene expression changesGene bodiesSplicing eventsDNA methylationModel organismsTranscriptional changesExpression changesGenesAge-related diseasesFunctional roleMouse liverHuman tissuesProlonged quiescenceRestriction functionSplicingDNAMiceAge-related contextSenescence
2009
Functional correlation of bacterial LuxS with their quaternary associations: interface analysis of the structure networks
Bhattacharyya M, Vishveshwara S. Functional correlation of bacterial LuxS with their quaternary associations: interface analysis of the structure networks. BMC Molecular And Cell Biology 2009, 9: 8. PMID: 19243584, PMCID: PMC2656534, DOI: 10.1186/1472-6807-9-8.Peer-Reviewed Original ResearchConceptsProtein structure networksSequence alignment studiesQuorum sensing moleculesDesign of inhibitorsHigh structural similarityCertain structural detailsGene homologuesStructure comparison methodsFlagellar motilityLux genesHomodimeric proteinDimer interfaceDimeric interfaceAI-2Protein interfacesVariety of functionsQuaternary associationMetabolic regulationSensing moleculesFunctional roleStructure networkProkaryotesX-ray crystallographyProteinToxin production