Moitrayee Bhattacharyya, PhD
Assistant Professor of PharmacologyCards
About
Titles
Assistant Professor of Pharmacology
Biography
The Bhattacharyya Lab studies molecular mechanism of kinase signaling, especially in the context of learning, memory and neuropathological conditions. Dr. Bhattacharyya received her PhD in Computational Biophysics at the Indian Institute of Science, Bangalore where she used molecular dynamics simulations and graph theory to study allosteric communication in proteins and its complexes with RNA/DNA. She made a transition into experimental biology during her postdoctoral studies at the University of California Berkeley as a Human Frontier Science Program Long Term Fellow. She used structural biology, single-molecule microscopy, and native mass spectrometry along with computational techniques to study the molecular mechanism of regulation in a calcium/calmodulin-dependent protein kinase that is critical for learning and memory. The Bhattacharyya Lab takes an integrative approach to understand the molecular mechanism of cellular signaling using both experimental and computational techniques.
Appointments
Pharmacology
Assistant ProfessorPrimary
Other Departments & Organizations
- Biochemistry, Quantitative Biology, Biophysics and Structural Biology (BQBS)
- Interdepartmental Neuroscience Program
- Janeway Society
- Molecular Medicine, Pharmacology, and Physiology
- Neural Disorders
- Neuroscience Track
- Pharmacology
- Primary Faculty
- Yale Combined Program in the Biological and Biomedical Sciences (BBS)
Education & Training
- Postdoc
- University of California Berkeley (2019)
- PhD
- Indian Institute of Science (2012)
Research
Publications
2024
A proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs
Brown C, Ghosh S, McAllister R, Kumar M, Walker G, Sun E, Aman T, Panda A, Kumar S, Li W, Coleman J, Liu Y, Rothman J, Bhattacharyya M, Gupta K. A proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs. Nature Methods 2024, 1-10. PMID: 39609567, DOI: 10.1038/s41592-024-02517-x.Peer-Reviewed Original ResearchTarget membrane proteinsMembrane proteinsMembrane contextSynaptic vesicle membrane proteinVesicle membrane proteinsMammalian membrane proteinsMembrane-active polymersExtraction of membrane proteinsNative nanodiscsOrganellar membranesNative membrane environmentMultiprotein complexesMolecular contextCellular membranesMembrane environmentQuantitative platformBioanalytical approachesExtraction efficiencyOpen-access databasesProteinMembraneExtraction conditionsNanodiscsTarget MPGene body DNA hydroxymethylation restricts the magnitude of transcriptional changes during aging
Occean J, Yang N, Sun Y, Dawkins M, Munk R, Belair C, Dar S, Anerillas C, Wang L, Shi C, Dunn C, Bernier M, Price N, Kim J, Cui C, Fan J, Bhattacharyya M, De S, Maragkakis M, de Cabo R, Sidoli S, Sen P. Gene body DNA hydroxymethylation restricts the magnitude of transcriptional changes during aging. Nature Communications 2024, 15: 6357. PMID: 39069555, PMCID: PMC11284234, DOI: 10.1038/s41467-024-50725-y.Peer-Reviewed Original ResearchConceptsTissue-specific functionsDNA hydroxymethylationMagnitude of transcriptional changesAlternative splicing eventsMagnitude of gene expression changesTissue-specific genesGene expression changesGene bodiesSplicing eventsDNA methylationModel organismsTranscriptional changesExpression changesGenesAge-related diseasesFunctional roleMouse liverHuman tissuesProlonged quiescenceRestriction functionSplicingDNAMiceAge-related contextSenescenceCapturing membrane snapshots: A quantitative proteome-wide guide for high-throughput spatially resolved extraction of membrane proteins for structural/functional studies on native membranes
Brown C, Ghosh S, McAllister R, Coleman J, Sun E, Zheng H, Kumar S, Panda A, Rothman J, Bhattacharyya M, Gupta K. Capturing membrane snapshots: A quantitative proteome-wide guide for high-throughput spatially resolved extraction of membrane proteins for structural/functional studies on native membranes. Biophysical Journal 2024, 123: 68a-69a. DOI: 10.1016/j.bpj.2023.11.487.Peer-Reviewed Original ResearchImaging nanoscale-spatial oligomeric organization of membrane proteins directly from native membranes at single-molecule resolution
Walker G, Brown C, Ge X, Kumar S, Muzumdar M, Gupta K, Bhattacharyya M. Imaging nanoscale-spatial oligomeric organization of membrane proteins directly from native membranes at single-molecule resolution. Biophysical Journal 2024, 123: 348a. DOI: 10.1016/j.bpj.2023.11.2115.Peer-Reviewed Original ResearchDetermining the membrane recruitment mechanisms of peripheral membrane proteins through native mass spectrometry directly from tunable lipid membranes
McAllister R, Jung W, Bhattacharyya M, Gupta K. Determining the membrane recruitment mechanisms of peripheral membrane proteins through native mass spectrometry directly from tunable lipid membranes. Biophysical Journal 2024, 123: 90a. DOI: 10.1016/j.bpj.2023.11.665.Peer-Reviewed Original Research
2023
Oligomeric organization of membrane proteins from native membranes at nanoscale spatial and single-molecule resolution
Walker G, Brown C, Ge X, Kumar S, Muzumdar M, Gupta K, Bhattacharyya M. Oligomeric organization of membrane proteins from native membranes at nanoscale spatial and single-molecule resolution. Nature Nanotechnology 2023, 19: 85-94. PMID: 38012273, PMCID: PMC10981947, DOI: 10.1038/s41565-023-01547-4.Peer-Reviewed Original ResearchMembrane proteinsNative membranesOligomeric organizationDiverse membrane proteinsMembrane protein biologyNative cell membranesTarget membrane proteinsNative membrane environmentSingle-molecule resolutionSingle-molecule platformReceptor tyrosine kinasesOligomeric distributionNative nanodiscsOligomerization statusProtein biologySmall GTPaseGrowth factor bindingMembrane environmentOligomeric assembliesTyrosine kinaseCritical regulatorOncogenic mutationsCell membraneProteinMembraneOligomeric distribution of membrane proteins in native-membrane environment at nanoscale spatial and single-molecule resolution
Walker G, Brown C, Ge X, Gupta K, Muzumdar M, Bhattacharyya M. Oligomeric distribution of membrane proteins in native-membrane environment at nanoscale spatial and single-molecule resolution. Biophysical Journal 2023, 122: 457a. DOI: 10.1016/j.bpj.2022.11.2457.Peer-Reviewed Original Research
2022
Deciphering the molecular organization of Get pathway chaperones through native top-down dissociation of multi-protein complexes
Giska F, Mariappan M, Bhattacharyya M, Gupta K. Deciphering the molecular organization of Get pathway chaperones through native top-down dissociation of multi-protein complexes. Biophysical Journal 2022, 121: 333a. DOI: 10.1016/j.bpj.2021.11.1119.Peer-Reviewed Original Research
2020
Breakage of the Oligomeric CaMKII Hub by the Regulatory Segment of the Kinase
Karandur D, Bhattacharyya M, Xia Z, Lee YK, Muratcioglu S, McAffee D, McSpadden E, Qiu B, Groves JT, Williams ER, Kuriyan J. Breakage of the Oligomeric CaMKII Hub by the Regulatory Segment of the Kinase. ELife 2020, 9: e57784. PMID: 32902386, PMCID: PMC7538161, DOI: 10.7554/elife.57784.Peer-Reviewed Original ResearchConceptsRegulatory segmentDependent protein kinase IIExchange of subunitsProtein kinase IIMammalian cellsFluorescence intensity analysisKinase IIOligomeric enzymesHoloenzymePhosphorylated peptidesNeuronal signalingSmall oligomersActive stateSubunitsCaMKIIActivationCrucial roleMolecular dynamics simulationsMass spectrometryKinasePhosphorylationSignalingHub structureBindsEnzymeFlexible linkers in CaMKII control the balance between activating and inhibitory autophosphorylation
Bhattacharyya M, Lee YK, Muratcioglu S, Qiu B, Nyayapati P, Schulman H, Groves JT, Kuriyan J. Flexible linkers in CaMKII control the balance between activating and inhibitory autophosphorylation. ELife 2020, 9: e53670. PMID: 32149607, PMCID: PMC7141811, DOI: 10.7554/elife.53670.Peer-Reviewed Original ResearchConceptsInhibitory autophosphorylationResidue linkerDependent protein kinase IISingle-molecule assaysMammalian cell expressionProtein kinase IICaMKII variantsShort linkerTransphosphorylation ratesKinase domainCaMKII holoenzymeKinase IIAutophosphorylationHoloenzymeFlexible linkerPrincipal isoformCalcium signalsRelative levelsIsoformsCaMKIIHuman CaCell expressionLinkerVariantsSequence
Academic Achievements & Community Involvement
News & Links
Media
- SMALP-based purification of Trk receptor tyrosine kinase from cells with minimal perturbation to its endogenous lipid environment for spatial lipidomics analysis (to measure changes in the membrane lipid composition in the immediate vicinity of the kinase under different states of activation, ligand binding and disease-mutations), single-molecule studies and native-MS interrogation (to study the effect of the endogenous lipid environment on the organization and signaling of Trk receptor isoforms).
- A molecular mechanistic investigation of the signaling pathways impli- cated in learning and memory and the pathologies of Down Syndrome like cognitive impairments and accelerated aging