2022
DuDoSS: Deep‐learning‐based dual‐domain sinogram synthesis from sparsely sampled projections of cardiac SPECT
Chen X, Zhou B, Xie H, Miao T, Liu H, Holler W, Lin M, Miller EJ, Carson RE, Sinusas AJ, Liu C. DuDoSS: Deep‐learning‐based dual‐domain sinogram synthesis from sparsely sampled projections of cardiac SPECT. Medical Physics 2022, 50: 89-103. PMID: 36048541, PMCID: PMC9868054, DOI: 10.1002/mp.15958.Peer-Reviewed Original ResearchConceptsLow reconstruction accuracySynthetic projectionsAbsolute percent errorImage predictionSPECT image reconstructionImage domainSinogram synthesisGround truthReconstruction accuracyImage reconstructionSinogram domainProjection angleData acquisitionMean square errorFast data acquisitionImagesReconstruction artifactsSPECT imagesSquare errorDirect and indirect strategies of deep-learning-based attenuation correction for general purpose and dedicated cardiac SPECT
Chen X, Zhou B, Xie H, Shi L, Liu H, Holler W, Lin M, Liu YH, Miller EJ, Sinusas AJ, Liu C. Direct and indirect strategies of deep-learning-based attenuation correction for general purpose and dedicated cardiac SPECT. European Journal Of Nuclear Medicine And Molecular Imaging 2022, 49: 3046-3060. PMID: 35169887, PMCID: PMC9253078, DOI: 10.1007/s00259-022-05718-8.Peer-Reviewed Original Research
2021
Quantitative Automated Segmentation of Lipiodol Deposits on Cone-Beam CT Imaging Acquired during Transarterial Chemoembolization for Liver Tumors: A Deep Learning Approach
Malpani R, Petty CW, Yang J, Bhatt N, Zeevi T, Chockalingam V, Raju R, Petukhova-Greenstein A, Santana JG, Schlachter TR, Madoff DC, Chapiro J, Duncan J, Lin M. Quantitative Automated Segmentation of Lipiodol Deposits on Cone-Beam CT Imaging Acquired during Transarterial Chemoembolization for Liver Tumors: A Deep Learning Approach. Journal Of Vascular And Interventional Radiology 2021, 33: 324-332.e2. PMID: 34923098, PMCID: PMC8972393, DOI: 10.1016/j.jvir.2021.12.017.Peer-Reviewed Original ResearchDeep learning–assisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma (HCC) versus non-HCC on contrast-enhanced MRI of the liver
Oestmann PM, Wang CJ, Savic LJ, Hamm CA, Stark S, Schobert I, Gebauer B, Schlachter T, Lin M, Weinreb JC, Batra R, Mulligan D, Zhang X, Duncan JS, Chapiro J. Deep learning–assisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma (HCC) versus non-HCC on contrast-enhanced MRI of the liver. European Radiology 2021, 31: 4981-4990. PMID: 33409782, PMCID: PMC8222094, DOI: 10.1007/s00330-020-07559-1.Peer-Reviewed Original ResearchConceptsNon-HCC lesionsHepatocellular carcinomaHCC lesionsAtypical imagingGrading systemLI-RADS criteriaAtypical imaging featuresPrimary liver cancerTypical hepatocellular carcinomaAtypical hepatocellular carcinomaContrast-enhanced MRISensitivity/specificityLiver transplantMethodsThis IRBRetrospective studyLiver malignanciesImaging featuresLiver cancerAtypical featuresConclusionThis studyLesionsMRIClinical applicationCarcinomaImage-based diagnosis