2023
Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning
Kucukkaya A, Zeevi T, Chai N, Raju R, Haider S, Elbanan M, Petukhova-Greenstein A, Lin M, Onofrey J, Nowak M, Cooper K, Thomas E, Santana J, Gebauer B, Mulligan D, Staib L, Batra R, Chapiro J. Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning. Scientific Reports 2023, 13: 7579. PMID: 37165035, PMCID: PMC10172370, DOI: 10.1038/s41598-023-34439-7.Peer-Reviewed Original Research
2022
Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis
Bahar RC, Merkaj S, Petersen G, Tillmanns N, Subramanian H, Brim WR, Zeevi T, Staib L, Kazarian E, Lin M, Bousabarah K, Huttner AJ, Pala A, Payabvash S, Ivanidze J, Cui J, Malhotra A, Aboian MS. Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis. Frontiers In Oncology 2022, 12: 856231. PMID: 35530302, PMCID: PMC9076130, DOI: 10.3389/fonc.2022.856231.Peer-Reviewed Original ResearchMachine learning modelsLearning modelConvolutional neural networkDeep learning studiesLarge training datasetsGrade predictionSupport vector machineApplication of MLNeural networkConventional machineVector machineTraining datasetBest performing modelCommon algorithmsModel performanceEssential metricMean prediction accuracyHigh predictive accuracyPrediction accuracyPerforming modelMachinePrediction modelDiagnosis statementsAccuracy statementsLearning studies
2021
OTHR-12. The development of machine learning algorithms for the differentiation of glioma and brain metastases – a systematic review
Brim W, Jekel L, Petersen G, Subramanian H, Zeevi T, Payabvash S, Bousabarah K, Lin M, Cui J, Brackett A, Mahajan A, Johnson M, Mahajan A, Aboian M. OTHR-12. The development of machine learning algorithms for the differentiation of glioma and brain metastases – a systematic review. Neuro-Oncology Advances 2021, 3: iii17-iii17. PMCID: PMC8351249, DOI: 10.1093/noajnl/vdab071.067.Peer-Reviewed Original ResearchConvolutional neural networkDeep learningML algorithmsMachine Learning AlgorithmsApplication of machineClassical ML algorithmsDevelopment of machineSupport vector machine algorithmVector machine algorithmArtificial intelligenceMachine learningSearch strategyDL modelsLearning algorithmFeature extractionNeural networkMachine algorithmAverage accuracyML methodsCML algorithmAlgorithmHigh accuracyLearningMachineAccuracy
2020
Automatic Multimodal Registration via Intraprocedural Cone-Beam CT Segmentation using MRI Distance Maps
Augenfeld Z, Lin M, Chapiro J, Duncan J. Automatic Multimodal Registration via Intraprocedural Cone-Beam CT Segmentation using MRI Distance Maps. 2020, 00: 1-4. DOI: 10.1109/isbi45749.2020.9098619.Peer-Reviewed Original ResearchRobust Point MatchingMultimodal registrationConvolutional neural networkSpatial informationDistance mapTarget image segmentationAutomatic multimodal registrationDense spatial informationMore medical imagesMedical imagesImaging domainImage segmentationSupervised fashionNeural networkTarget imageCT segmentationSegmented regionsSource imagesPoint matchingRegistration frameworkSegmentationSecond networkNetworkImage qualityImage-guided procedures