2023
Comparing 3D, 2.5D, and 2D Approaches to Brain Image Auto-Segmentation
Avesta A, Hossain S, Lin M, Aboian M, Krumholz H, Aneja S. Comparing 3D, 2.5D, and 2D Approaches to Brain Image Auto-Segmentation. Bioengineering 2023, 10: 181. PMID: 36829675, PMCID: PMC9952534, DOI: 10.3390/bioengineering10020181.Peer-Reviewed Original ResearchLimited training dataDice scoreComputational memoryTraining dataBrain imagesDeep-learning methodsHigher Dice scoresSegmentation accuracyAuto-segmentation modelComputational speedPerformance metricsOne-sliceAuto-SegmentationBetter performanceConsecutive slicesImagesDeploymentLowest Dice scoresMemoryPerformanceTrainingMetricsModelAccuracyData
2022
Machine Learning Tools for Image-Based Glioma Grading and the Quality of Their Reporting: Challenges and Opportunities
Merkaj S, Bahar RC, Zeevi T, Lin M, Ikuta I, Bousabarah K, Petersen G, Staib L, Payabvash S, Mongan JT, Cha S, Aboian MS. Machine Learning Tools for Image-Based Glioma Grading and the Quality of Their Reporting: Challenges and Opportunities. Cancers 2022, 14: 2623. PMID: 35681603, PMCID: PMC9179416, DOI: 10.3390/cancers14112623.Peer-Reviewed Original ResearchMachine learning toolsGrade predictionLearning toolsML applicationsClassifier algorithmML modelsClassification methodMedical imagingData sourcesPractices of radiologistsToolGlioma gradingNext stepWorkflowAlgorithmChallengesTechnological innovationImplementationPredictionModelLast decadeSpecific areas