Featured Publications
BRD7 improves glucose homeostasis independent of IRS proteins.
Kim Y, Lee J, Han Y, Tao R, White M, Liu R, Park S. BRD7 improves glucose homeostasis independent of IRS proteins. Journal Of Endocrinology 2023, 258 PMID: 37578842, PMCID: PMC10430774, DOI: 10.1530/joe-23-0119.Peer-Reviewed Original ResearchConceptsGlucose homeostasisKnockout miceAlternative insulinObese miceGlucose homeostasis independentGlucose metabolism parametersContext of obesityBlood glucose levelsMetabolism parametersGlucose levelsGlucose metabolismInsulinMiceIRS proteinsInsulin receptorProtein 7ObesityHomeostasisUpregulationBRD7InvolvementPathwayNovel insightsEuglycemiaFindingsHepatic follistatin increases basal metabolic rate and attenuates diet-induced obesity during hepatic insulin resistance
Tao R, Stöhr O, Wang C, Qiu W, Copps K, White M. Hepatic follistatin increases basal metabolic rate and attenuates diet-induced obesity during hepatic insulin resistance. Molecular Metabolism 2023, 71: 101703. PMID: 36906067, PMCID: PMC10033741, DOI: 10.1016/j.molmet.2023.101703.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBasal MetabolismDiet, High-FatFollistatinInsulinInsulin ResistanceLiverMiceObesityConceptsHepatic insulin resistanceInsulin resistanceAdipose massBasal metabolic rateHepatic disruptionDiet-induced obesityFat mass accumulationTotal lean massHigh-fat dietBody weight changesHFD consumptionFat massLean massFOXO1-dependent mannerHepatic overexpressionHepatic insulinObesityMetabolic rateThe role of hepatokines in NAFLD
Stefan N, Schick F, Birkenfeld A, Häring H, White M. The role of hepatokines in NAFLD. Cell Metabolism 2023, 35: 236-252. PMID: 36754018, PMCID: PMC10157895, DOI: 10.1016/j.cmet.2023.01.006.Peer-Reviewed Original ResearchConceptsNon-alcoholic fatty liver diseaseNon-communicable diseasesInsulin resistanceVisceral obesityMajor non-communicable diseasesRole of hepatokinesFatty liver diseaseRole of fetuinVisceral adiposityFatty liverLiver diseaseCardiometabolic diseasesPathophysiological mechanismsOrgan crosstalkHepatokinesMain pathomechanismClinical practiceImportant causeDiseasePrecision medicineAdipokinesObesityMetabolismAdiposityPathomechanismLower Hepatic Fat Is Associated With Improved Insulin Secretion in a High-Risk Prediabetes Subphenotype During Lifestyle Intervention
Wagner R, Heni M, Kantartzis K, Sandforth A, Machann J, Schick F, Peter A, Fritsche L, Szendrödi J, Pfeiffer A, Schürmann A, Blüher M, Hauner H, Seissler J, Bornstein S, Roden M, Stefan N, Birkenfeld A, White M, Häring H, Fritsche A. Lower Hepatic Fat Is Associated With Improved Insulin Secretion in a High-Risk Prediabetes Subphenotype During Lifestyle Intervention. Diabetes 2022, 72: 362-366. PMID: 36525512, PMCID: PMC9935494, DOI: 10.2337/db22-0441.Peer-Reviewed Original ResearchMeSH KeywordsBlood GlucoseHumansInsulinInsulin ResistanceInsulin SecretionLife StyleLiverPrediabetic StateConceptsInsulin secretionLifestyle interventionLiver fatOral glucose tolerance testHigh liver fatLifestyle intervention studyGlucose tolerance testHigh-risk clustersHepatic fatTolerance testInsulin sensitivitySpecific subphenotypesIntervention studiesSecretionTime pointsInterventionPrediabetesGlycemic traitsFatSubphenotypesGlycemiaCluster 3Elevated circulating follistatin associates with an increased risk of type 2 diabetes
Wu C, Borné Y, Gao R, López Rodriguez M, Roell W, Wilson J, Regmi A, Luan C, Aly D, Peter A, Machann J, Staiger H, Fritsche A, Birkenfeld A, Tao R, Wagner R, Canouil M, Hong M, Schwenk J, Ahlqvist E, Kaikkonen M, Nilsson P, Shore A, Khan F, Natali A, Melander O, Orho-Melander M, Nilsson J, Häring H, Renström E, Wollheim C, Engström G, Weng J, Pearson E, Franks P, White M, Duffin K, Vaag A, Laakso M, Stefan N, Groop L, De Marinis Y. Elevated circulating follistatin associates with an increased risk of type 2 diabetes. Nature Communications 2021, 12: 6486. PMID: 34759311, PMCID: PMC8580990, DOI: 10.1038/s41467-021-26536-w.Peer-Reviewed Original ResearchConceptsAdipose tissue insulin resistanceTissue insulin resistanceType 2 diabetesFollistatin levelsGlucokinase regulatory protein geneFollistatin secretionHazard ratioInsulin resistanceNon-alcoholic fatty liver diseaseAdjusted hazard ratioFatty liver diseaseRisk of T2DFree fatty acid releaseFatty acid releaseIncident T2DLiver diseaseGenome-wide association studiesHuman adipocytesT2DAcid releaseStandard deviation increaseDiabetesSecretionRiskRegulatory protein gene
2021
Insulin action at a molecular level – 100 years of progress
White M, Kahn C. Insulin action at a molecular level – 100 years of progress. Molecular Metabolism 2021, 52: 101304. PMID: 34274528, PMCID: PMC8551477, DOI: 10.1016/j.molmet.2021.101304.Peer-Reviewed Original ResearchConceptsAmino acid sequenceType 2 diabetesFunction of insulinAcid sequenceMolecular knowledgeHuman diseasesInsulin-sensitive tissuesPhysiological functionsPhysiological roleInsulin receptorInsulin-resistant statesInsulin 100 yearsInsulin actionBlood glucoseCascadeInsulinDiabetesTissueDiscoveryRegulationTreatmentRemarkable advancesRoleSequenceYearsFoxO1 suppresses Fgf21 during hepatic insulin resistance to impair peripheral glucose utilization and acute cold tolerance
Stöhr O, Tao R, Miao J, Copps K, White M. FoxO1 suppresses Fgf21 during hepatic insulin resistance to impair peripheral glucose utilization and acute cold tolerance. Cell Reports 2021, 34: 108893. PMID: 33761350, PMCID: PMC8529953, DOI: 10.1016/j.celrep.2021.108893.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAdipocytes, BrownAdipose Tissue, BrownAnimalsBlood GlucoseBody WeightCold TemperatureDiet, High-FatFibroblast Growth FactorsForkhead Box Protein O1Gene Expression RegulationGlucoseHomeostasisInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceLipid MetabolismLiverMice, KnockoutOrgan SpecificityOxidation-ReductionThermogenesisConceptsHepatic insulin resistanceInsulin resistanceGlucose utilizationHigher plasma Fgf21 levelsSevere hepatic insulin resistanceFGF21 knockout micePlasma FGF21 levelsPeripheral glucose utilizationInsulin-resistant miceThermogenic gene expressionFGF21 resistancePharmacologic formsFGF21 levelsCold intoleranceFGF21 functionMetabolic healthBAT functionGlucose homeostasisKnockout miceFGF21Adenoviral infectionMiceWeight lossSkeletal muscleAcute cold toleranceInsulin receptor substrate 1, but not IRS2, plays a dominant role in regulating pancreatic alpha cell function in mice
Takatani T, Shirakawa J, Shibue K, Gupta M, Kim H, Lu S, Hu J, White M, Kennedy R, Kulkarni R. Insulin receptor substrate 1, but not IRS2, plays a dominant role in regulating pancreatic alpha cell function in mice. Journal Of Biological Chemistry 2021, 296: 100646. PMID: 33839150, PMCID: PMC8131928, DOI: 10.1016/j.jbc.2021.100646.Peer-Reviewed Original ResearchConceptsAKT Ser/Thr kinaseInsulin receptor substrate (IRS) proteinsSer/Thr kinaseAlpha-cell functionGlobal protein translationCell functionInsulin receptor substrate-1Pancreatic alpha-cell functionDownstream target genesReceptor substrate-1Alpha cellsAlpha-cell lineGlucagon secretionSubstrate proteinsProtein translationTarget genesSubstrate-1Downstream proteinsDominant regulatorPancreatic alpha cellsMitochondrial dysfunctionCognate receptorsIRS2Normal glucose toleranceCell lines
2020
From population to neuron: exploring common mediators for metabolic problems and mental illnesses
Takayanagi Y, Ishizuka K, Laursen T, Yukitake H, Yang K, Cascella N, Ueda S, Sumitomo A, Narita Z, Horiuchi Y, Niwa M, Taguchi A, White M, Eaton W, Mortensen P, Sakurai T, Sawa A. From population to neuron: exploring common mediators for metabolic problems and mental illnesses. Molecular Psychiatry 2020, 26: 3931-3942. PMID: 33173197, PMCID: PMC8514126, DOI: 10.1038/s41380-020-00939-5.Peer-Reviewed Original ResearchConceptsMajor mental illnessOlfactory neuronal cellsInsulin resistanceMental illnessBipolar disorderNeuronal cellsPathophysiological mediatorsHigh incidenceSZ patientsCommon mediatorIrs2 knockout miceSame large cohortIRS2 tyrosine phosphorylationDanish registriesBP patientsHealthy controlsHealthy subjectsLarge cohortEpidemiological dataEpidemiological studiesKnockout miceAnimal modelsPatientsMetabolic problemsDiabetesInsulin receptor substrates differentially exacerbate insulin-mediated left ventricular remodeling
Riehle C, Weatherford E, Wende A, Jaishy B, Seei A, McCarty N, Rech M, Shi Q, Reddy G, Kutschke W, Oliveira K, Pires K, Anderson J, Diakos N, Weiss R, White M, Drakos S, Xiang Y, Abel E. Insulin receptor substrates differentially exacerbate insulin-mediated left ventricular remodeling. JCI Insight 2020, 5: e134920. PMID: 32213702, PMCID: PMC7213803, DOI: 10.1172/jci.insight.134920.Peer-Reviewed Original ResearchConceptsTransverse aortic constrictionInsulin receptor substrate-1Left ventricular remodelingHeart failureVentricular remodelingCardiac hypertrophyTAC-induced LV hypertrophyPressure-overload cardiac hypertrophySevere LV dysfunctionInsulin receptor tyrosine kinase activityAkt1 activationReceptor tyrosine kinase activityLV dysfunctionLV hypertrophyWT miceInsulin resistanceLV remodelingAortic constrictionProinflammatory responseProtein kinase GInsulin receptor substrateReceptor substrate-1Kinomic profilingWT controlsTyrosine kinase activity
2019
Phosphorylation of Forkhead Protein FoxO1 at S253 Regulates Glucose Homeostasis in Mice
Zhang K, Guo X, Yan H, Wu Y, Pan Q, Shen J, Li X, Chen Y, Li L, Qi Y, Xu Z, Xie W, Zhang W, Threadgill D, He L, Villarreal D, Sun Y, White M, Zheng H, Guo S. Phosphorylation of Forkhead Protein FoxO1 at S253 Regulates Glucose Homeostasis in Mice. Endocrinology 2019, 160: 1333-1347. PMID: 30951171, PMCID: PMC6482038, DOI: 10.1210/en.2018-00853.Peer-Reviewed Original ResearchConceptsKey phosphorylation sitesForkhead protein FoxO1Protein kinase BTranscription factor forkhead box O1Factor forkhead box O1FOXO1 nuclear localizationMultiple physiological functionsMouse Foxo1Forkhead box O1Pancreatic plasticityPhosphorylation sitesHuman FOXO1Nuclear localizationTarget genesMolecular basisS253Kinase BFoxO1 activityPhysiological functionsGlucose homeostasisBox O1Pancreatic β-cell functionFOXO1PhosphorylationHepatic glucose production
2018
Hyperglycemia induces vascular smooth muscle cell dedifferentiation by suppressing insulin receptor substrate-1–mediated p53/KLF4 complex stabilization
Xi G, Shen X, Wai C, White M, Clemmons D. Hyperglycemia induces vascular smooth muscle cell dedifferentiation by suppressing insulin receptor substrate-1–mediated p53/KLF4 complex stabilization. Journal Of Biological Chemistry 2018, 294: 2407-2421. PMID: 30578299, PMCID: PMC6378959, DOI: 10.1074/jbc.ra118.005398.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtherosclerosisCell DifferentiationHumansHyperglycemiaInsulin Receptor Substrate ProteinsInsulin ResistanceKruppel-Like Factor 4Kruppel-Like Transcription FactorsMiceMice, KnockoutMultiprotein ComplexesMuscle, Smooth, VascularMyocytes, Smooth MuscleProtein StabilityProto-Oncogene MasProto-Oncogene Proteins c-mdm2SwineTumor Suppressor Protein p53ConceptsKrüppel-like factor 4Vascular smooth muscle cell dedifferentiationSmooth muscle cell dedifferentiationInsulin receptor substrate-1Muscle cell dedifferentiationNormoglycemic miceAtherosclerotic lesionsHigh glucoseVSMC differentiationInsulin resistance stateP53 levelsIRS-1 knockdownSmooth muscle protein 22P53 associationExpression of p21Cell dedifferentiationMarker protein expressionAccelerates AtherosclerosisNondiabetic pigsDiabetic pigsIRS-1 overexpressionNutlin-3 treatmentMDM2/p53Receptor substrate-1MDM2 proto-oncogeneInsulin signaling and reduced glucocorticoid receptor activity attenuate postprandial gene expression in liver
Kalvisa A, Siersbæk M, Præstholm S, Christensen L, Nielsen R, Stohr O, Vettorazzi S, Tuckermann J, White M, Mandrup S, Grøntved L. Insulin signaling and reduced glucocorticoid receptor activity attenuate postprandial gene expression in liver. PLOS Biology 2018, 16: e2006249. PMID: 30532187, PMCID: PMC6301715, DOI: 10.1371/journal.pbio.2006249.Peer-Reviewed Original ResearchConceptsCircadian gene transcriptionGene transcriptionGene expressionCircadian-regulated genesInsulin-regulated genesGenomic approachesGlucocorticoid receptorGene programEnhancer activityCistromic analysisGlucocorticoid receptor activityGenesMechanistic insightsTranscriptionFeeding behaviorSelective disruptionDiet-induced obese animalsEnhancerReceptor activityFeeding responseDiet-induced obesityExpressionDysregulationChromatinFOXO1Rho kinase/AMPK axis regulates hepatic lipogenesis during overnutrition
Huang H, Lee S, Sousa-Lima I, Kim S, Hwang W, Dagon Y, Yang W, Cho S, Kang M, Seo J, Shibata M, Cho H, Belew G, Bhin J, Desai B, Ryu M, Shong M, Li P, Meng H, Chung B, Hwang D, Kim M, Park K, Macedo M, White M, Jones J, Kim Y. Rho kinase/AMPK axis regulates hepatic lipogenesis during overnutrition. Journal Of Clinical Investigation 2018, 128: 5335-5350. PMID: 30226474, PMCID: PMC6264719, DOI: 10.1172/jci63562.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseFatty liver diseaseHepatic lipid accumulationLiver diseaseInsulin resistanceRisk factorsNovo lipogenesisObesity-related metabolic disordersLipid accumulationObesity-induced steatosisChronic liver diseaseObese diabetic miceDiet-induced obesityMajor risk factorSevere hepatic steatosisHigh-fat dietDe novo lipogenesisThermogenic gene expressionRho kinase 1Antidiabetes drugsDiabetic miceHepatic steatosisActivation of AMPKHepatocellular carcinomaMetabolic disordersInactivating hepatic follistatin alleviates hyperglycemia
Tao R, Wang C, Stöhr O, Qiu W, Hu Y, Miao J, Dong X, Leng S, Stefater M, Stylopoulos N, Lin L, Copps K, White M. Inactivating hepatic follistatin alleviates hyperglycemia. Nature Medicine 2018, 24: 1058-1069. PMID: 29867232, PMCID: PMC6039237, DOI: 10.1038/s41591-018-0048-0.Peer-Reviewed Original ResearchConceptsHepatic glucose productionAdipose tissue insulinGlucose toleranceTissue insulinSuppression of HGPGastric bypass surgeryFed obese miceHepatic insulin resistanceWhite adipose tissuePotential clinical significanceInsulin receptor substrate-1Bypass surgeryGlucose intoleranceHepatic inactivationObese miceInsulin resistanceObese individualsGlycated hemoglobinTranscription factor FOXO1Insulin sensitivityNormal suppressionClinical significanceReceptor substrate-1Adipose tissueExpression of Fst
2017
Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity
Cao J, Peng J, An H, He Q, Boronina T, Guo S, White M, Cole P, He L. Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity. Nature Communications 2017, 8: 131. PMID: 28743992, PMCID: PMC5526866, DOI: 10.1038/s41467-017-00163-w.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorE1A-Associated p300 ProteinEndoplasmic Reticulum StressEndotoxemiaGene Expression ProfilingImmunoblottingInsulinInsulin ResistanceLipopolysaccharidesLiverMaleMembrane ProteinsMice, Inbred C57BLMice, ObeseObesityProtein Serine-Threonine KinasesReceptor, InsulinSignal TransductionX-Box Binding Protein 1ConceptsInsulin resistanceP300 acetyltransferase activityHigh-fat diet-fedChronic low-grade inflammationObese ob/ob miceOb/ob miceLow-grade inflammationDiet-induced obesityAcetyltransferase activityElevated plasma concentrationsPromising therapeutic targetCytoplasm of hepatocytesEndoplasmic reticulum stressObese patientsObese miceInsulin sensitivityIntestinal permeabilityOb micePlasma concentrationsDisrupts insulinTherapeutic targetImpairs insulinPharmacological inhibitionGlucose productionObesity
2014
IRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevity
White M. IRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevity. Diabetes Obesity And Metabolism 2014, 16: 4-15. PMID: 25200290, DOI: 10.1111/dom.12347.Peer-Reviewed Original ResearchConceptsInsulin/IGF1Central nervous systemInsulin-like signalingLife spanOrganisms showsCellular functionsNutrient homeostasisInsulin resistanceGenetic manipulationSystemic insulin resistanceClinical Alzheimer's diseaseType 2 diabetesEnergy homeostasisNeurodegenerative diseasesMetabolismNeurodegenerationCompensatory hyperinsulinaemiaHomeostasisProgressive neurodegenerationSystemic metabolismIGF1Excess insulinNervous systemAlzheimer's diseaseClinical perspectiveAPPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor
Ryu J, Galan A, Xin X, Dong F, Abdul-Ghani M, Zhou L, Wang C, Li C, Holmes B, Sloane L, Austad S, Guo S, Musi N, DeFronzo R, Deng C, White M, Liu F, Dong L. APPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor. Cell Reports 2014, 7: 1227-1238. PMID: 24813896, PMCID: PMC4380268, DOI: 10.1016/j.celrep.2014.04.006.Peer-Reviewed Original Research
2013
IRS1Ser307 phosphorylation does not mediate mTORC1-induced insulin resistance
Herrema H, Lee J, Zhou Y, Copps K, White M, Ozcan U. IRS1Ser307 phosphorylation does not mediate mTORC1-induced insulin resistance. Biochemical And Biophysical Research Communications 2013, 443: 689-693. PMID: 24333417, PMCID: PMC3926104, DOI: 10.1016/j.bbrc.2013.12.023.Peer-Reviewed Original ResearchConceptsInsulin resistanceGlucose intoleranceInsulin sensitivityImpaired insulin receptorStress-induced insulin resistanceRapamycin complex 1 (mTORC1) activityPhosphorylation of IRS1Endoplasmic reticulum stressDiabetic miceER stress-induced insulin resistanceMammalian targetIRS1 phosphorylationReticulum stressMiceIntoleranceInsulin receptorVivoSer307Myocardial Loss of IRS1 and IRS2 Causes Heart Failure and Is Controlled by p38α MAPK During Insulin Resistance
Qi Y, Xu Z, Zhu Q, Thomas C, Kumar R, Feng H, Dostal D, White M, Baker K, Guo S. Myocardial Loss of IRS1 and IRS2 Causes Heart Failure and Is Controlled by p38α MAPK During Insulin Resistance. Diabetes 2013, 62: 3887-3900. PMID: 24159000, PMCID: PMC3806607, DOI: 10.2337/db13-0095.Peer-Reviewed Original ResearchConceptsIRS2 proteinGene expressionType 2 diabetesEnergy metabolism gene expressionInsulin resistanceMetabolic gene expressionBox class ODouble knockout miceHeart failureActivation of p38Chronic insulin exposureActivation of p38αMetabolism gene expressionProtein kinaseRole of IRS1Cellular metabolismMolecular mechanismsInsulin receptorNeonatal rat ventricular cardiomyocytesP38α MAPKCause heart failureCellular dysfunctionIRS1Myocardial insulin resistanceClass O