Featured Publications
Mechanism of Insulin Action
White M. Mechanism of Insulin Action. 2024, 111-127. DOI: 10.1002/9781119697473.ch9.Peer-Reviewed Original ResearchReceptor tyrosine kinasesTyrosine kinaseGrowth factor signalingSecrete sufficient insulinDysregulated insulin signalingPancreatic beta cellsMuscle insulin resistanceEnvironmental signalsSignal transductionInsulin signalingMuscle-specific deletionSystemic insulin actionSystemic insulin resistanceAdequate insulin responseFactor signalingInsulin-like growth factor signalingPlasma membraneInsulin resistanceInsulin receptorLigand bindingBeta cellsMetabolic stressChronic insulin resistanceGlucose transportTransphosphorylationHepatic follistatin increases basal metabolic rate and attenuates diet-induced obesity during hepatic insulin resistance
Tao R, Stöhr O, Wang C, Qiu W, Copps K, White M. Hepatic follistatin increases basal metabolic rate and attenuates diet-induced obesity during hepatic insulin resistance. Molecular Metabolism 2023, 71: 101703. PMID: 36906067, PMCID: PMC10033741, DOI: 10.1016/j.molmet.2023.101703.Peer-Reviewed Original ResearchConceptsHepatic insulin resistanceInsulin resistanceAdipose massBasal metabolic rateHepatic disruptionDiet-induced obesityFat mass accumulationTotal lean massHigh-fat dietBody weight changesHFD consumptionFat massLean massFOXO1-dependent mannerHepatic overexpressionHepatic insulinObesityMetabolic rateThe role of hepatokines in NAFLD
Stefan N, Schick F, Birkenfeld A, Häring H, White M. The role of hepatokines in NAFLD. Cell Metabolism 2023, 35: 236-252. PMID: 36754018, PMCID: PMC10157895, DOI: 10.1016/j.cmet.2023.01.006.Peer-Reviewed Original ResearchConceptsNon-alcoholic fatty liver diseaseNon-communicable diseasesInsulin resistanceVisceral obesityMajor non-communicable diseasesRole of hepatokinesFatty liver diseaseRole of fetuinVisceral adiposityFatty liverLiver diseaseCardiometabolic diseasesPathophysiological mechanismsOrgan crosstalkHepatokinesMain pathomechanismClinical practiceImportant causeDiseasePrecision medicineAdipokinesObesityMetabolismAdiposityPathomechanismElevated circulating follistatin associates with an increased risk of type 2 diabetes
Wu C, Borné Y, Gao R, López Rodriguez M, Roell W, Wilson J, Regmi A, Luan C, Aly D, Peter A, Machann J, Staiger H, Fritsche A, Birkenfeld A, Tao R, Wagner R, Canouil M, Hong M, Schwenk J, Ahlqvist E, Kaikkonen M, Nilsson P, Shore A, Khan F, Natali A, Melander O, Orho-Melander M, Nilsson J, Häring H, Renström E, Wollheim C, Engström G, Weng J, Pearson E, Franks P, White M, Duffin K, Vaag A, Laakso M, Stefan N, Groop L, De Marinis Y. Elevated circulating follistatin associates with an increased risk of type 2 diabetes. Nature Communications 2021, 12: 6486. PMID: 34759311, PMCID: PMC8580990, DOI: 10.1038/s41467-021-26536-w.Peer-Reviewed Original ResearchConceptsAdipose tissue insulin resistanceTissue insulin resistanceType 2 diabetesFollistatin levelsGlucokinase regulatory protein geneFollistatin secretionHazard ratioInsulin resistanceNon-alcoholic fatty liver diseaseAdjusted hazard ratioFatty liver diseaseRisk of T2DFree fatty acid releaseFatty acid releaseIncident T2DLiver diseaseGenome-wide association studiesHuman adipocytesT2DAcid releaseStandard deviation increaseDiabetesSecretionRiskRegulatory protein gene
2021
Irs2 deficiency alters hippocampus-associated behaviors during young adulthood
Tanokashira D, Wang W, Maruyama M, Kuroiwa C, White M, Taguchi A. Irs2 deficiency alters hippocampus-associated behaviors during young adulthood. Biochemical And Biophysical Research Communications 2021, 559: 148-154. PMID: 33940386, PMCID: PMC8361845, DOI: 10.1016/j.bbrc.2021.04.101.Peer-Reviewed Original ResearchConceptsYoung adult male miceAdult male miceMale miceAlzheimer's diseaseType 2 diabetes mellitusInsulin-like growth factor-1Brain energy metabolismGrowth factor-1Young adult malesCore body temperatureDiabetes mellitusInsulin resistanceInsulin/insulin-like growth factor-1Risk factorsBehavioral alterationsCognitive impairmentGenetic backgroundPremature deathHippocampusMiceYoung adulthoodAberrant alterationsFactor 1Abnormal changesBody temperatureFoxO1 suppresses Fgf21 during hepatic insulin resistance to impair peripheral glucose utilization and acute cold tolerance
Stöhr O, Tao R, Miao J, Copps K, White M. FoxO1 suppresses Fgf21 during hepatic insulin resistance to impair peripheral glucose utilization and acute cold tolerance. Cell Reports 2021, 34: 108893. PMID: 33761350, PMCID: PMC8529953, DOI: 10.1016/j.celrep.2021.108893.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAdipocytes, BrownAdipose Tissue, BrownAnimalsBlood GlucoseBody WeightCold TemperatureDiet, High-FatFibroblast Growth FactorsForkhead Box Protein O1Gene Expression RegulationGlucoseHomeostasisInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceLipid MetabolismLiverMice, KnockoutOrgan SpecificityOxidation-ReductionThermogenesisConceptsHepatic insulin resistanceInsulin resistanceGlucose utilizationHigher plasma Fgf21 levelsSevere hepatic insulin resistanceFGF21 knockout micePlasma FGF21 levelsPeripheral glucose utilizationInsulin-resistant miceThermogenic gene expressionFGF21 resistancePharmacologic formsFGF21 levelsCold intoleranceFGF21 functionMetabolic healthBAT functionGlucose homeostasisKnockout miceFGF21Adenoviral infectionMiceWeight lossSkeletal muscleAcute cold tolerance
2020
From population to neuron: exploring common mediators for metabolic problems and mental illnesses
Takayanagi Y, Ishizuka K, Laursen T, Yukitake H, Yang K, Cascella N, Ueda S, Sumitomo A, Narita Z, Horiuchi Y, Niwa M, Taguchi A, White M, Eaton W, Mortensen P, Sakurai T, Sawa A. From population to neuron: exploring common mediators for metabolic problems and mental illnesses. Molecular Psychiatry 2020, 26: 3931-3942. PMID: 33173197, PMCID: PMC8514126, DOI: 10.1038/s41380-020-00939-5.Peer-Reviewed Original ResearchConceptsMajor mental illnessOlfactory neuronal cellsInsulin resistanceMental illnessBipolar disorderNeuronal cellsPathophysiological mediatorsHigh incidenceSZ patientsCommon mediatorIrs2 knockout miceSame large cohortIRS2 tyrosine phosphorylationDanish registriesBP patientsHealthy controlsHealthy subjectsLarge cohortEpidemiological dataEpidemiological studiesKnockout miceAnimal modelsPatientsMetabolic problemsDiabetesInsulin receptor substrates differentially exacerbate insulin-mediated left ventricular remodeling
Riehle C, Weatherford E, Wende A, Jaishy B, Seei A, McCarty N, Rech M, Shi Q, Reddy G, Kutschke W, Oliveira K, Pires K, Anderson J, Diakos N, Weiss R, White M, Drakos S, Xiang Y, Abel E. Insulin receptor substrates differentially exacerbate insulin-mediated left ventricular remodeling. JCI Insight 2020, 5: e134920. PMID: 32213702, PMCID: PMC7213803, DOI: 10.1172/jci.insight.134920.Peer-Reviewed Original ResearchConceptsTransverse aortic constrictionInsulin receptor substrate-1Left ventricular remodelingHeart failureVentricular remodelingCardiac hypertrophyTAC-induced LV hypertrophyPressure-overload cardiac hypertrophySevere LV dysfunctionInsulin receptor tyrosine kinase activityAkt1 activationReceptor tyrosine kinase activityLV dysfunctionLV hypertrophyWT miceInsulin resistanceLV remodelingAortic constrictionProinflammatory responseProtein kinase GInsulin receptor substrateReceptor substrate-1Kinomic profilingWT controlsTyrosine kinase activity
2019
1835-P: Deletion of Insulin Receptor Substrate 2 in AGRP Neurons Causes Beta-Cell Dysfunction
TAO R, COPPS K, WHITE M, STOEHR O. 1835-P: Deletion of Insulin Receptor Substrate 2 in AGRP Neurons Causes Beta-Cell Dysfunction. Diabetes 2019, 68 DOI: 10.2337/db19-1835-p.Peer-Reviewed Original ResearchAgRP neuronsArcuate nucleusInsulin resistanceInsulin secretionInsulin receptor substrateType 2 diabetes progressesCompensatory insulin secretionL-arginine treatmentBeta-cell compensationBeta-cell dysfunctionPeripheral insulin resistanceBeta-cell failureBeta-cell functionHigh-fat dietInsulin secretory functionType 2 diabetesSteady-state hyperglycemiaGlucose infusion rateΒ-cell dysfunctionInsulin receptor substrate 2Pancreatic β-cellsGrowth-promoting actionDiabetes progressesFat dietHyperglycemic clamp282-LB: Dysregulated FGF21 Links Hepatic Insulin Resistance to Dysfunctional BAT
STOEHR O, TAO R, COPPS K, WHITE M. 282-LB: Dysregulated FGF21 Links Hepatic Insulin Resistance to Dysfunctional BAT. Diabetes 2019, 68 DOI: 10.2337/db19-282-lb.Peer-Reviewed Original ResearchHepatic insulin resistanceFGF-21Insulin resistanceHFD feedingControl miceDiabetic phenotypeGlucose metabolismFGF-21 serum levelsWhole-body glucose metabolismGlucose uptakeInsulin-resistant liverImproved glucose toleranceWild-type miceHepatic glucose productionSevere diabetic phenotypeNormal glucose uptakeHealthy batsBAT dysfunctionSerum levelsGlucose toleranceBAT functionType miceNormal rangeInsulin actionAdenoviral infection
2018
Rho kinase/AMPK axis regulates hepatic lipogenesis during overnutrition
Huang H, Lee S, Sousa-Lima I, Kim S, Hwang W, Dagon Y, Yang W, Cho S, Kang M, Seo J, Shibata M, Cho H, Belew G, Bhin J, Desai B, Ryu M, Shong M, Li P, Meng H, Chung B, Hwang D, Kim M, Park K, Macedo M, White M, Jones J, Kim Y. Rho kinase/AMPK axis regulates hepatic lipogenesis during overnutrition. Journal Of Clinical Investigation 2018, 128: 5335-5350. PMID: 30226474, PMCID: PMC6264719, DOI: 10.1172/jci63562.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseFatty liver diseaseHepatic lipid accumulationLiver diseaseInsulin resistanceRisk factorsNovo lipogenesisObesity-related metabolic disordersLipid accumulationObesity-induced steatosisChronic liver diseaseObese diabetic miceDiet-induced obesityMajor risk factorSevere hepatic steatosisHigh-fat dietDe novo lipogenesisThermogenic gene expressionRho kinase 1Antidiabetes drugsDiabetic miceHepatic steatosisActivation of AMPKHepatocellular carcinomaMetabolic disordersMetabolic Dysfunction within Brown Adipose Tissue and Skeletal Muscle Caused by Complete Hepatic Insulin Resistance Is Reversible by FGF-21 Treatment
STOEHR O, TAO R, COPPS K, WHITE M. Metabolic Dysfunction within Brown Adipose Tissue and Skeletal Muscle Caused by Complete Hepatic Insulin Resistance Is Reversible by FGF-21 Treatment. Diabetes 2018, 67 DOI: 10.2337/db18-1873-p.Peer-Reviewed Original ResearchHepatic insulin resistanceFGF-21Insulin resistanceGlucose toleranceSkeletal muscleGlucose uptakeAdipose tissue markersFGF-21 treatmentSkeletal muscle dysfunctionSystemic insulin resistanceBetter glucose toleranceSystemic glucose homeostasisDouble knockout miceBrown adipose tissueDeletion of FoxO1Hepatokine secretionThermogenesis markersHepatic infectionBody core temperatureGlucose intoleranceMuscle dysfunctionSevere hyperglycemiaControl miceInsulin sensitivityMetabolic dysfunctionInactivating hepatic follistatin alleviates hyperglycemia
Tao R, Wang C, Stöhr O, Qiu W, Hu Y, Miao J, Dong X, Leng S, Stefater M, Stylopoulos N, Lin L, Copps K, White M. Inactivating hepatic follistatin alleviates hyperglycemia. Nature Medicine 2018, 24: 1058-1069. PMID: 29867232, PMCID: PMC6039237, DOI: 10.1038/s41591-018-0048-0.Peer-Reviewed Original ResearchConceptsHepatic glucose productionAdipose tissue insulinGlucose toleranceTissue insulinSuppression of HGPGastric bypass surgeryFed obese miceHepatic insulin resistanceWhite adipose tissuePotential clinical significanceInsulin receptor substrate-1Bypass surgeryGlucose intoleranceHepatic inactivationObese miceInsulin resistanceObese individualsGlycated hemoglobinTranscription factor FOXO1Insulin sensitivityNormal suppressionClinical significanceReceptor substrate-1Adipose tissueExpression of Fst
2017
Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity
Cao J, Peng J, An H, He Q, Boronina T, Guo S, White M, Cole P, He L. Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity. Nature Communications 2017, 8: 131. PMID: 28743992, PMCID: PMC5526866, DOI: 10.1038/s41467-017-00163-w.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorE1A-Associated p300 ProteinEndoplasmic Reticulum StressEndotoxemiaGene Expression ProfilingImmunoblottingInsulinInsulin ResistanceLipopolysaccharidesLiverMaleMembrane ProteinsMice, Inbred C57BLMice, ObeseObesityProtein Serine-Threonine KinasesReceptor, InsulinSignal TransductionX-Box Binding Protein 1ConceptsInsulin resistanceP300 acetyltransferase activityHigh-fat diet-fedChronic low-grade inflammationObese ob/ob miceOb/ob miceLow-grade inflammationDiet-induced obesityAcetyltransferase activityElevated plasma concentrationsPromising therapeutic targetCytoplasm of hepatocytesEndoplasmic reticulum stressObese patientsObese miceInsulin sensitivityIntestinal permeabilityOb micePlasma concentrationsDisrupts insulinTherapeutic targetImpairs insulinPharmacological inhibitionGlucose productionObesity
2014
IRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevity
White M. IRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevity. Diabetes Obesity And Metabolism 2014, 16: 4-15. PMID: 25200290, DOI: 10.1111/dom.12347.Peer-Reviewed Original ResearchConceptsInsulin/IGF1Central nervous systemInsulin-like signalingLife spanOrganisms showsCellular functionsNutrient homeostasisInsulin resistanceGenetic manipulationSystemic insulin resistanceClinical Alzheimer's diseaseType 2 diabetesEnergy homeostasisNeurodegenerative diseasesMetabolismNeurodegenerationCompensatory hyperinsulinaemiaHomeostasisProgressive neurodegenerationSystemic metabolismIGF1Excess insulinNervous systemAlzheimer's diseaseClinical perspective
2013
IRS1Ser307 phosphorylation does not mediate mTORC1-induced insulin resistance
Herrema H, Lee J, Zhou Y, Copps K, White M, Ozcan U. IRS1Ser307 phosphorylation does not mediate mTORC1-induced insulin resistance. Biochemical And Biophysical Research Communications 2013, 443: 689-693. PMID: 24333417, PMCID: PMC3926104, DOI: 10.1016/j.bbrc.2013.12.023.Peer-Reviewed Original ResearchConceptsInsulin resistanceGlucose intoleranceInsulin sensitivityImpaired insulin receptorStress-induced insulin resistanceRapamycin complex 1 (mTORC1) activityPhosphorylation of IRS1Endoplasmic reticulum stressDiabetic miceER stress-induced insulin resistanceMammalian targetIRS1 phosphorylationReticulum stressMiceIntoleranceInsulin receptorVivoSer307Irs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis
Sadagurski M, Dong X, Myers M, White M. Irs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis. Molecular Metabolism 2013, 3: 55-63. PMID: 24567904, PMCID: PMC3929908, DOI: 10.1016/j.molmet.2013.10.004.Peer-Reviewed Original ResearchFed blood glucose levelsBlood glucose levelsLepRb neuronsSevere obesityInsulin resistanceInsulin receptor substrateGlucose levelsLeptin receptorGlucose homeostasisBody weightInsulin/IGF1MiceMetabolic homeostasisEnergy expenditureNeuronsWhole bodyReceptor substrateIRS2Metabolic sensingHomeostasisMetabolic regulationHyperglycemiaLepRbObesityHypothalamusMyocardial Loss of IRS1 and IRS2 Causes Heart Failure and Is Controlled by p38α MAPK During Insulin Resistance
Qi Y, Xu Z, Zhu Q, Thomas C, Kumar R, Feng H, Dostal D, White M, Baker K, Guo S. Myocardial Loss of IRS1 and IRS2 Causes Heart Failure and Is Controlled by p38α MAPK During Insulin Resistance. Diabetes 2013, 62: 3887-3900. PMID: 24159000, PMCID: PMC3806607, DOI: 10.2337/db13-0095.Peer-Reviewed Original ResearchConceptsIRS2 proteinGene expressionType 2 diabetesEnergy metabolism gene expressionInsulin resistanceMetabolic gene expressionBox class ODouble knockout miceHeart failureActivation of p38Chronic insulin exposureActivation of p38αMetabolism gene expressionProtein kinaseRole of IRS1Cellular metabolismMolecular mechanismsInsulin receptorNeonatal rat ventricular cardiomyocytesP38α MAPKCause heart failureCellular dysfunctionIRS1Myocardial insulin resistanceClass OSerine Phosphorylation Sites on IRS2 Activated by Angiotensin II and Protein Kinase C To Induce Selective Insulin Resistance in Endothelial Cells
Park K, Li Q, Rask-Madsen C, Mima A, Mizutani K, Winnay J, Maeda Y, D'Aquino K, White M, Feener E, King G. Serine Phosphorylation Sites on IRS2 Activated by Angiotensin II and Protein Kinase C To Induce Selective Insulin Resistance in Endothelial Cells. Molecular And Cellular Biology 2013, 33: 3227-3241. PMID: 23775122, PMCID: PMC3753901, DOI: 10.1128/mcb.00506-13.Peer-Reviewed Original ResearchMeSH KeywordsAngiotensin IIAnimalsCattleCell LineEndothelial CellsEnzyme ActivationInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceMaleMiceMice, TransgenicPhosphatidylinositol 3-KinasesPhosphorylationProtein Kinase CProtein Kinase C betaRatsRats, ZuckerSerineTetradecanoylphorbol AcetateThreonineTyrosine
2012
Integrating Metabolism and Longevity Through Insulin and IGF1 Signaling
Sadagurski M, White M. Integrating Metabolism and Longevity Through Insulin and IGF1 Signaling. Endocrinology And Metabolism Clinics Of North America 2012, 42: 127-148. PMID: 23391244, PMCID: PMC3982789, DOI: 10.1016/j.ecl.2012.11.008.Peer-Reviewed Original ResearchConceptsInsulin/IGF1Central nervous systemLife spanOrganism longevityCellular functionsStress resistanceGenetic manipulationIGF1 signalingInsulin pathwayMetabolic homeostasisEnergy homeostasisPeripheral energy homeostasisSystemic insulin resistanceHomeostasisMetabolismSystemic metabolismNeuronal circuitsCompensatory hyperinsulinemiaInsulin resistanceIGF1Central regulationExcess insulinNervous systemLongevityNematodes