2024
Cohesin distribution alone predicts chromatin organization in yeast via conserved-current loop extrusion
Yuan T, Yan H, Li K, Surovtsev I, King M, Mochrie S. Cohesin distribution alone predicts chromatin organization in yeast via conserved-current loop extrusion. Genome Biology 2024, 25: 293. PMID: 39543681, PMCID: PMC11566905, DOI: 10.1186/s13059-024-03432-2.Peer-Reviewed Original ResearchMeSH KeywordsCCCTC-Binding FactorCell Cycle ProteinsChromatinChromosomal Proteins, Non-HistoneSaccharomyces cerevisiaeSchizosaccharomycesConceptsTopologically associating domainsLoop extrusionTopologically associating domains boundariesNon-vertebrate eukaryotesChIP-seq dataChromatin spatial organizationTree of lifeHi-C mapsBinds CTCFCohesin distributionTAD boundariesCTCF sitesChromatin organizationDNA sequencesCTCFCohesinYeastChromatinSpatial organizationEukaryotesGenomeResultsToVertebratesExtrusion factorsOrganization
2023
An ESCRT grommet cooperates with a diffusion barrier to maintain nuclear integrity
Ader N, Chen L, Surovtsev I, Chadwick W, Rodriguez E, King M, Lusk C. An ESCRT grommet cooperates with a diffusion barrier to maintain nuclear integrity. Nature Cell Biology 2023, 25: 1465-1477. PMID: 37783794, PMCID: PMC11365527, DOI: 10.1038/s41556-023-01235-4.Peer-Reviewed Original ResearchMeSH KeywordsAnaphaseEndosomal Sorting Complexes Required for TransportNuclear EnvelopeNuclear PoreSchizosaccharomycesConceptsSpindle pole body proteinNuclear envelope barrierESCRT-III proteinsNuclear pore complexSpindle pole bodyNucleocytoplasmic compartmentalizationESCRT functionPore complexPole bodyDistinct complementNuclear compartmentNuclear integrityTransport proteinsMolecular mechanismsRemodelling mechanismProteinBody protein
2019
RNA–DNA Hybrids Support Recombination-Based Telomere Maintenance in Fission Yeast
Hu Y, Bennett HW, Liu N, Moravec M, Williams JF, Azzalin CM, King MC. RNA–DNA Hybrids Support Recombination-Based Telomere Maintenance in Fission Yeast. Genetics 2019, 213: 431-447. PMID: 31405990, PMCID: PMC6781888, DOI: 10.1534/genetics.119.302606.Peer-Reviewed Original ResearchConceptsTelomeric repeat-containing RNAHomology-directed repairFission yeastR-loopsLinear chromosomesTelomere maintenanceRecombination-based telomere maintenanceTelomerase-independent telomere maintenanceShelterin component Rap1State of telomeresTelomeric R-loopsRepeat-containing RNARNA-DNA hybridsDeletion of Rap1Telomerase-independent mechanismChromosome endsShelterin componentsGrowth crisisTelomerase functionTelomeric DNARecombination factorsSubset of cancersTelomeresAlternative lengtheningShort telomeres
2018
Rev7 and 53BP1/Crb2 prevent RecQ helicase-dependent hyper-resection of DNA double-strand breaks
Leland BA, Chen AC, Zhao AY, Wharton RC, King MC. Rev7 and 53BP1/Crb2 prevent RecQ helicase-dependent hyper-resection of DNA double-strand breaks. ELife 2018, 7: e33402. PMID: 29697047, PMCID: PMC5945276, DOI: 10.7554/elife.33402.Peer-Reviewed Original ResearchConceptsDNA double-strand breaksDouble-strand breaksLong-range resectionPARPi resistanceBRCA1-deficient cellsHomology-directed repairExonuclease Exo1RecQ helicaseNucleolytic processingMicroscopy assaysREV7Cancer cellsMachineryPreclinical modelsResectionPolymerase inhibitorsPathwayCellsRecQOrthologuesHelicaseExo1AssaysDNA2Breaks
2016
TeloPCR‐seq: a high‐throughput sequencing approach for telomeres
Bennett HW, Liu N, Hu Y, King MC. TeloPCR‐seq: a high‐throughput sequencing approach for telomeres. FEBS Letters 2016, 590: 4159-4170. PMID: 27714790, PMCID: PMC5561429, DOI: 10.1002/1873-3468.12444.Peer-Reviewed Original ResearchImproved Determination of Subnuclear Position Enabled by Three-Dimensional Membrane Reconstruction
Zhao Y, Schreiner SM, Koo PK, Colombi P, King MC, Mochrie SG. Improved Determination of Subnuclear Position Enabled by Three-Dimensional Membrane Reconstruction. Biophysical Journal 2016, 111: 19-24. PMID: 27410730, PMCID: PMC4945324, DOI: 10.1016/j.bpj.2016.05.036.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsEndoplasmic ReticulumFluorescent DyesImaging, Three-DimensionalMiceModels, BiologicalNIH 3T3 CellsNuclear EnvelopeSchizosaccharomycesConceptsChromatin biologyLac operator arraysMembrane marker proteinsNuclear positionBroad practical utilityNuclear volumeNuclear peripheryOrganelle shapeChromatin markersTranscriptional regulationSubnuclear positionLacI-GFPDNA repairIndividual lociNuclear compartmentPopulation of cellsNuclear envelopeLocus positionParticular locusMarker proteinsImage analysis pipelineLociCell populationsAnalysis pipelineBiological accuracy
2015
The tethering of chromatin to the nuclear envelope supports nuclear mechanics
Schreiner SM, Koo PK, Zhao Y, Mochrie SG, King MC. The tethering of chromatin to the nuclear envelope supports nuclear mechanics. Nature Communications 2015, 6: 7159. PMID: 26074052, PMCID: PMC4490570, DOI: 10.1038/ncomms8159.Peer-Reviewed Original ResearchMeSH KeywordsCell NucleusChromatinMicroscopy, Electron, ScanningNuclear EnvelopeNuclear LaminaOptical TweezersSchizosaccharomycesConceptsNuclear mechanicsRole of chromatinOptical tweezersWild-type nucleiNetwork of lipidsCytoskeletal forcesNuclear laminaCytoskeletal dynamicsMechanical defensesMembrane tethersDeformable nucleiNuclear envelopeChromatinNuclear shapeIsolated nucleiIndividual mechanical contributionsMembrane resultsNucleusTweezersMechanicsLaminsProteinTetheringLaminaDefense
2014
A Role for Nuclear Envelope Bridging Complexes in Homology-Directed Repair
Swartz RK, Rodriguez EC, King MC. A Role for Nuclear Envelope Bridging Complexes in Homology-Directed Repair. Molecular Biology Of The Cell 2014, 25: mbc.e13-10-0569. PMID: 24943839, PMCID: PMC4142617, DOI: 10.1091/mbc.e13-10-0569.Peer-Reviewed Original ResearchConceptsDNA double-strand breaksHomology-directed repairRepair of DSBsNumber of genesDouble-strand breaksSame gene productCytoskeleton (LINC) complexLINC complexGenome instabilityATR kinaseGene conversionKms1DSB resectionGene productsDepolymerization of microtubulesCell cycleCytoplasmic microtubulesG2 phaseDNA damageSad1MicrotubulesComplexesNucleoskeletonMTO1CytoskeletonThe KASH protein Kms2 coordinates mitotic remodeling of the spindle pole body
Wälde S, King MC. The KASH protein Kms2 coordinates mitotic remodeling of the spindle pole body. Journal Of Cell Science 2014, 127: 3625-3640. PMID: 24963130, PMCID: PMC4132395, DOI: 10.1242/jcs.154997.Peer-Reviewed Original ResearchConceptsSpindle pole bodyMitotic entryPole bodySUN domain protein Sad1Nuclear envelopeMitotic spindle pole bodiesPolo kinase Plo1SUN-KASH complexesYeast centrosome equivalentBipolar spindle formationCentrosome equivalentMitotic remodelingSchizosaccharomyces pombeSpindle formationSpindle polesMonopolar spindlesMitotic catastrophePlo1Cut12PCP1KMS2Sad1PombeBiogenesisRemodeling