2024
Balancing acts: The posttranslational modification tightrope of flavivirus replication
Boytz R, Laurent-Rolle M. Balancing acts: The posttranslational modification tightrope of flavivirus replication. PLOS Pathogens 2024, 20: e1012626. PMID: 39466723, PMCID: PMC11516179, DOI: 10.1371/journal.ppat.1012626.Peer-Reviewed Original Research
2023
CMPK2 restricts Zika virus replication by inhibiting viral translation
Pawlak J, Hsu J, Xia H, Han P, Suh H, Grove T, Morrison J, Shi P, Cresswell P, Laurent-Rolle M. CMPK2 restricts Zika virus replication by inhibiting viral translation. PLOS Pathogens 2023, 19: e1011286. PMID: 37075076, PMCID: PMC10150978, DOI: 10.1371/journal.ppat.1011286.Peer-Reviewed Original ResearchConceptsCytidine/uridine monophosphate kinase 2I interferon-stimulated genesZika virus replicationYellow fever virusAntiviral activityAntiviral effectVirus replicationKunjin virusType I interferon-stimulated genesFirst lineOverall antiviral responseHost's first lineEffective therapeutic interventionsViral translationBroad antiviral activityInterferon-stimulated genesGlobal health threatAntiviral treatmentFlaviviral infectionsPathogenic flavivirusesAntiviral functionDrug AdministrationTherapeutic interventionsAntiviral responseDengue virus
2022
SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to down-regulate MHC-I surface expression
Arshad N, Laurent-Rolle M, Ahmed W, Hsu J, Mitchell S, Pawlak J, Sengupta D, Biswas K, Cresswell P. SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to down-regulate MHC-I surface expression. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 120: e2208525120. PMID: 36574644, PMCID: PMC9910621, DOI: 10.1073/pnas.2208525120.Peer-Reviewed Original ResearchConceptsMHC-I expressionSARS-CoV-2Major histocompatibility complex (MHC) class I moleculesT cell recognitionVirus-infected cellsClass I moleculesAntigen presentationOngoing COVID-19 pandemicHeavy chainImmune evasionViral peptidesSecretory pathwayDistinct mechanismsMHCI moleculesPeptide-MHCInfected cellsCausative agentCell recognitionCD8COVID-19 pandemicViral proteinsEndoplasmic reticulumHuman MHCORF7a
2021
Early but not late convalescent plasma is associated with better survival in moderate-to-severe COVID-19
Briggs N, Gormally MV, Li F, Browning SL, Treggiari MM, Morrison A, Laurent-Rolle M, Deng Y, Hendrickson JE, Tormey CA, Desruisseaux MS. Early but not late convalescent plasma is associated with better survival in moderate-to-severe COVID-19. PLOS ONE 2021, 16: e0254453. PMID: 34320004, PMCID: PMC8318280, DOI: 10.1371/journal.pone.0254453.Peer-Reviewed Original ResearchConceptsCOVID-19 convalescent plasmaSevere COVID-19Convalescent plasmaPlasma recipientsHospital mortalityUnexposed cohortCCP administrationSevere COVID-19 infectionPropensity score-matched analysisCOVID-19Limited therapeutic optionsCOVID-19 infectionCoronavirus disease 2019CCP recipientsHospital stayPrimary endpointSecondary endpointsHospital daysHospital dischargeEarly administrationComplete followMechanical ventilationTherapeutic optionsClinical differencesSevere diseaseTranslational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein
Hsu JC, Laurent-Rolle M, Pawlak JB, Wilen CB, Cresswell P. Translational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2101161118. PMID: 34045361, PMCID: PMC8214666, DOI: 10.1073/pnas.2101161118.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Interferon-stimulated genesImmune responseSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Host protein synthesisRespiratory syndrome coronavirus 2Syndrome coronavirus 2Innate immune responseUnprecedented global health crisisCoronavirus 2N7-methyltransferase activityOngoing COVID-19 pandemicHuman coronavirusesTranslational shutdownVirus replicationNsp14 proteinGlobal health crisisProtein synthesisInhibition activityCausative agentCOVID-19COVID-19 pandemicSARS-CoV-2 nsp14Dependent inductionSARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2
Lu Q, Liu J, Zhao S, Gomez Castro MF, Laurent-Rolle M, Dong J, Ran X, Damani-Yokota P, Tang H, Karakousi T, Son J, Kaczmarek ME, Zhang Z, Yeung ST, McCune BT, Chen RE, Tang F, Ren X, Chen X, Hsu JCC, Teplova M, Huang B, Deng H, Long Z, Mudianto T, Jin S, Lin P, Du J, Zang R, Su TT, Herrera A, Zhou M, Yan R, Cui J, Zhu J, Zhou Q, Wang T, Ma J, Koralov SB, Zhang Z, Aifantis I, Segal LN, Diamond MS, Khanna KM, Stapleford KA, Cresswell P, Liu Y, Ding S, Xie Q, Wang J. SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity 2021, 54: 1304-1319.e9. PMID: 34048708, PMCID: PMC8106883, DOI: 10.1016/j.immuni.2021.05.006.Peer-Reviewed Original ResearchMeSH KeywordsAngiotensin-Converting Enzyme 2Binding SitesCell LineCOVID-19CytokinesGene Expression RegulationHost-Pathogen InteractionsHumansInflammation MediatorsLectins, C-TypeMembrane ProteinsModels, MolecularMyeloid CellsNeoplasm ProteinsProtein BindingProtein ConformationSARS-CoV-2Single-Domain AntibodiesSpike Glycoprotein, CoronavirusStructure-Activity RelationshipConceptsSARS-CoV-2Proinflammatory responseMyeloid cellsFamily member 2Robust proinflammatory responseC-type lectin receptorsCOVID-19 therapyCOVID-19 severityMember 2SARS-CoV-2 spikeCoronavirus disease 2019Single-cell RNA sequencing analysisReceptor-binding domainImmune hyperactivationImmune cellsDisease 2019Enzyme 2Pulmonary cellsC-type lectinRNA sequencing analysisCanonical receptorLectin receptorsPotential targetPredominant expressionReceptor interaction
2020
Prolonged incubation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a patient on rituximab therapy
Koff A, Laurent-Rolle M, Hsu JC, Malinis M. Prolonged incubation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a patient on rituximab therapy. Infection Control And Hospital Epidemiology 2020, 42: 1286-1288. PMID: 33023685, PMCID: PMC7578652, DOI: 10.1017/ice.2020.1239.Peer-Reviewed Case Reports and Technical NotesConceptsSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Syndrome coronavirus 2Coronavirus 2Coronavirus disease 2019Rituximab therapyPatient populationDisease 2019Longer quarantine durationQuarantine durationPatientsIncubation periodDaysHypogammaglobulinemiaTherapyProlonged incubation
2019
The Role of NS5 Protein in Determination of Host Cell Range for Yellow Fever Virus
Laurent-Rolle M, Morrison J. The Role of NS5 Protein in Determination of Host Cell Range for Yellow Fever Virus. DNA And Cell Biology 2019, 38: 1414-1417. PMID: 31633391, DOI: 10.1089/dna.2019.5115.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsHost-Specific NS5 Ubiquitination Determines Yellow Fever Virus Tropism
Miorin L, Laurent-Rolle M, Pisanelli G, Co PH, Albrecht RA, García-Sastre A, Morrison J. Host-Specific NS5 Ubiquitination Determines Yellow Fever Virus Tropism. Journal Of Virology 2019, 93: 10.1128/jvi.00151-19. PMID: 31043530, PMCID: PMC6600188, DOI: 10.1128/jvi.00151-19.Peer-Reviewed Original Research
2015
La Piedad Michoacán Mexico Virus V protein antagonizes type I interferon response by binding STAT2 protein and preventing STATs nuclear translocation
Pisanelli G, Laurent-Rolle M, Manicassamy B, Belicha-Villanueva A, Morrison J, Lozano-Dubernard B, Castro-Peralta F, Iovane G, García-Sastre. A. La Piedad Michoacán Mexico Virus V protein antagonizes type I interferon response by binding STAT2 protein and preventing STATs nuclear translocation. Virus Research 2015, 213: 11-22. PMID: 26546155, PMCID: PMC5538256, DOI: 10.1016/j.virusres.2015.10.027.Peer-Reviewed Original ResearchConceptsNuclear translocationParamyxoviridae familyIFN α/βSTAT2 proteinRubulavirus genusMost paramyxovirusesV proteinType I interferon responseI interferon responseCellular responsesSTAT2Innate immune responseAmino acidsType I interferonSignificant disease burdenProteinBlue eye diseaseMexico virusInterferon responseProtein levelsSwine cellsIFN responseSTAT1I interferonRespiratory distress
2014
The Interferon Signaling Antagonist Function of Yellow Fever Virus NS5 Protein Is Activated by Type I Interferon
Laurent-Rolle M, Morrison J, Rajsbaum R, Macleod JML, Pisanelli G, Pham A, Ayllon J, Miorin L, Martínez-Romero C, tenOever BR, García-Sastre A. The Interferon Signaling Antagonist Function of Yellow Fever Virus NS5 Protein Is Activated by Type I Interferon. Cell Host & Microbe 2014, 16: 314-327. PMID: 25211074, PMCID: PMC4176702, DOI: 10.1016/j.chom.2014.07.015.Peer-Reviewed Original ResearchUnanchored K48-Linked Polyubiquitin Synthesized by the E3-Ubiquitin Ligase TRIM6 Stimulates the Interferon-IKKε Kinase-Mediated Antiviral Response
Rajsbaum R, Versteeg GA, Schmid S, Maestre AM, Belicha-Villanueva A, Martínez-Romero C, Patel JR, Morrison J, Pisanelli G, Miorin L, Laurent-Rolle M, Moulton HM, Stein DA, Fernandez-Sesma A, tenOever BR, García-Sastre A. Unanchored K48-Linked Polyubiquitin Synthesized by the E3-Ubiquitin Ligase TRIM6 Stimulates the Interferon-IKKε Kinase-Mediated Antiviral Response. Immunity 2014, 40: 880-895. PMID: 24882218, PMCID: PMC4114019, DOI: 10.1016/j.immuni.2014.04.018.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntiviral AgentsCells, CulturedEnzyme ActivationHumansI-kappa B KinaseInterferon Type IJanus Kinase 1MicePhosphorylationPolyubiquitinRNA InterferenceRNA, Small InterferingSignal TransductionSTAT1 Transcription FactorTripartite Motif ProteinsUbiquitin-Conjugating EnzymesUbiquitin-Protein LigasesConceptsUnanchored K48Polyubiquitin chainsUnanchored polyubiquitin chainsUpregulation of hundredsAntiviral responseIκB kinase epsilonTripartite motif (TRIM) familyIKKε activationMotif familyKinase activationCellular factorsUBE2KReceptor signalingSTAT1 phosphorylationK48Kinase epsilonType I interferonIFN signalingIFN receptor signalingTRIM6Microbial infectionsISG inductionI interferonSignalingIKKε
2013
Dengue Virus Co-opts UBR4 to Degrade STAT2 and Antagonize Type I Interferon Signaling
Morrison J, Laurent-Rolle M, Maestre AM, Rajsbaum R, Pisanelli G, Simon V, Mulder LC, Fernandez-Sesma A, García-Sastre A. Dengue Virus Co-opts UBR4 to Degrade STAT2 and Antagonize Type I Interferon Signaling. PLOS Pathogens 2013, 9: e1003265. PMID: 23555265, PMCID: PMC3610674, DOI: 10.1371/journal.ppat.1003265.Peer-Reviewed Original ResearchConceptsDengue hemorrhagic feverType I interferonDengue feverSTAT2 degradationImmune evasionI interferonDENV NS5Anti-DENV therapeuticsDengue virus infectionDENV NS5 proteinVirus infectionHemorrhagic feverDENV replicationViral replicationAntiviral therapeuticsEfficient viral replicationIFNPotential severityFeverDENVInterferonNS5Competent cellsHost proteinsNS5 protein
2010
The NS5 Protein of the Virulent West Nile Virus NY99 Strain Is a Potent Antagonist of Type I Interferon-Mediated JAK-STAT Signaling
Laurent-Rolle M, Boer EF, Lubick KJ, Wolfinbarger JB, Carmody AB, Rockx B, Liu W, Ashour J, Shupert WL, Holbrook MR, Barrett AD, Mason PW, Bloom ME, García-Sastre A, Khromykh AA, Best SM. The NS5 Protein of the Virulent West Nile Virus NY99 Strain Is a Potent Antagonist of Type I Interferon-Mediated JAK-STAT Signaling. Journal Of Virology 2010, 84: 3503-3515. PMID: 20106931, PMCID: PMC2838099, DOI: 10.1128/jvi.01161-09.Peer-Reviewed Original ResearchConceptsPY-STAT1IFN antagonismJAK-STAT signal transductionIFN antagonistAlpha/beta interferonSignal transductionWild-type virusAnalogous residuesIFN-dependent gene expressionGene expressionJAK-STATKunjin virusSingle residueHost innate responseNonstructural protein NS5NS5 proteinSTAT1 phosphorylationSTAT2 degradationPoor suppressorNY99 strainPresence of IFNMutationsIFN-alpha/NS5Beta interferon
2009
NS5 of Dengue Virus Mediates STAT2 Binding and Degradation
Ashour J, Laurent-Rolle M, Shi PY, García-Sastre A. NS5 of Dengue Virus Mediates STAT2 Binding and Degradation. Journal Of Virology 2009, 83: 5408-5418. PMID: 19279106, PMCID: PMC2681973, DOI: 10.1128/jvi.02188-08.Peer-Reviewed Original ResearchConceptsDengue virusInnate immune responseInnate antiviral responseImmune responseInfection resultsIFN responseAntiviral responseDENV proteinsLevel of expressionAntiviral therapeuticsDENV genomeDecreased levelsInterferonPotential targetProtein levelsViral pathogensHost proteasesReduced levelsProteasome activityMultiple mechanismsVirusFacilitate infectionNovel mechanismViral polypeptidesNS5
2003
Inhibition of interferon signaling by dengue virus
Muñoz-Jordán J, Sánchez-Burgos GG, Laurent-Rolle M, García-Sastre A. Inhibition of interferon signaling by dengue virus. Proceedings Of The National Academy Of Sciences Of The United States Of America 2003, 100: 14333-14338. PMID: 14612562, PMCID: PMC283592, DOI: 10.1073/pnas.2335168100.Peer-Reviewed Original ResearchConceptsPositive-strand RNA genomeExpression of NS4BPositive-strand RNA virusesNuclear signal transducerVirus-encoded proteinsStrand RNA virusesStrand RNA genomeHuman A549 cellsDengue virusRNA genomeDengue virus-infected cellsSignal transducerTranscription 1Gene expressionUnknown functionVirus-infected cellsInhibition of interferonRNA virusesDengue virus infectionNS4BMosquito-borne flavivirusProteinA549 cellsIFN responseViral products