2011
Development of a Middle Cerebral Artery Occlusion Model in the Nonhuman Primate and a Safety Study of I.V. Infusion of Human Mesenchymal Stem Cells
Sasaki M, Honmou O, Radtke C, Kocsis JD. Development of a Middle Cerebral Artery Occlusion Model in the Nonhuman Primate and a Safety Study of I.V. Infusion of Human Mesenchymal Stem Cells. PLOS ONE 2011, 6: e26577. PMID: 22039510, PMCID: PMC3200343, DOI: 10.1371/journal.pone.0026577.Peer-Reviewed Original ResearchConceptsMiddle cerebral arteryMagnetic resonance imagingM1 occlusionCollateral circulationSevere groupVenous bloodOcclusion modelMesenchymal stem cellsMiddle cerebral artery occlusion modelM1 branchNHP stroke modelsExtensive collateral circulationArtery occlusion modelPost-operative courseMCA territory infarctionGreater functional improvementLeft sylvian fissureNonhuman primate modelFronto-temporal craniotomyExperimental stroke researchAfrican green monkeysStem cellsHMSC infusionTerritory infarctionNeurological examinationRemyelination after olfactory ensheathing cell transplantation into diverse demyelinating environments
Sasaki M, Lankford KL, Radtke C, Honmou O, Kocsis JD. Remyelination after olfactory ensheathing cell transplantation into diverse demyelinating environments. Experimental Neurology 2011, 229: 88-98. PMID: 21281634, DOI: 10.1016/j.expneurol.2011.01.010.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MovementCell TransplantationDemyelinating DiseasesHumansMyelin SheathOlfactory BulbConceptsCell transplantationDemyelinated spinal cord axonsMacrophage/microglia activationMost rodent modelsEndogenous myelin repairSpinal cord axonsNervous system repairMyelin-forming cellsMicroglia activationDemyelination modelDemyelinated lesionsLesion environmentActive demyelinationMyelin repairMyelin debrisRemyelination potentialInflammatory signalingRodent modelsLesion inductionRemyelinationExperimental remyelinationTransplantationTransplant studiesOECsHuman progenitors
2008
Potential of olfactory ensheathing cells for cell-based therapy in spinal cord injury
Radtke C, Sasaki M, Lankford KL, Vogt PM, Kocsis JD. Potential of olfactory ensheathing cells for cell-based therapy in spinal cord injury. The Journal Of Rehabilitation Research And Development 2008, 45: 141-152. PMID: 18566933, DOI: 10.1682/jrrd.2007.03.0049.Peer-Reviewed Original ResearchConceptsSpinal cord injuryPeripheral nervous systemCentral nervous systemCord injuryAxonal regenerationNervous systemTreatment of SCIContusive spinal cord injuryPotential of olfactoryPermanent neurological deficitsSpecialized glial cellsCell therapy approachesCell transplantation approachesOEC biologyAxonal lossNeurological deficitsCell-based therapiesFunctional outcomeGlial cellsClinical studiesComplex lesionsMedicine cliniciansMacrophage activationTransplantation approachesInhibitory moleculesOlfactory ensheathing cells exhibit unique migratory, phagocytic, and myelinating properties in the X‐irradiated spinal cord not shared by Schwann cells
Lankford KL, Sasaki M, Radtke C, Kocsis JD. Olfactory ensheathing cells exhibit unique migratory, phagocytic, and myelinating properties in the X‐irradiated spinal cord not shared by Schwann cells. Glia 2008, 56: 1664-1678. PMID: 18551623, DOI: 10.1002/glia.20718.Peer-Reviewed Original ResearchConceptsCentral nervous systemSpinal cordSchwann cellsOligodendrocyte progenitor cellsNormal central nervous systemMigratory propertiesOX-42 stainingNormal spinal cordOlfactory Ensheathing CellsMyelin-forming cellsDemyelinated lesionsHost axonsPhagocytic phenotypePoor survivalSubsequent lesionsNervous systemWhite matterCordLimited survivalOECsMigratory capabilityProgenitor cellsTransplantationX-irradiationLesions
2007
Demyelinating diseases and potential repair strategies
Radtke C, Spies M, Sasaki M, Vogt PM, Kocsis JD. Demyelinating diseases and potential repair strategies. International Journal Of Developmental Neuroscience 2007, 25: 149-153. PMID: 17408905, PMCID: PMC2692731, DOI: 10.1016/j.ijdevneu.2007.02.002.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell TransplantationDemyelinating DiseasesDisease Models, AnimalHumansMyelin SheathNerve RegenerationConceptsMultiple sclerosisInjury modelSpinal cord injuryCell-based strategiesAxon lossNerve compressionNeuroprotective potentialCord injuryFunctional outcomeClinical studiesMS lesionsTherapeutic goalsVulnerable axonsCellular transplantationNeurological disordersDemyelinationRemyelinationNeuroprotectionPotential repair strategiesCell typesSclerosisTransplantationInjuryLesionsAxonsRemyelination of the injured spinal cord
Sasaki M, Li B, Lankford KL, Radtke C, Kocsis JD. Remyelination of the injured spinal cord. Progress In Brain Research 2007, 161: 419-433. PMID: 17618995, PMCID: PMC2605400, DOI: 10.1016/s0079-6123(06)61030-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCell TransplantationHumansMyelin SheathNerve RegenerationPyramidal TractsSpinal Cord InjuriesConceptsSpinal cord injuryFunctional outcomeSpinal cordContusive spinal cord injuryLong white matter tractsPotential cell therapy candidatesWhite matter tractsMyelin-forming cellsCell therapy candidatesCord injuryCentral necrotic coreClinical studiesTherapy candidatesNecrotic coreTransplantation studiesExperimental modelCordOutcomesCellsDemyelinationRemyelinationInjuryNecrosisOECsAxons
2006
Myelination and nodal formation of regenerated peripheral nerve fibers following transplantation of acutely prepared olfactory ensheathing cells
Dombrowski MA, Sasaki M, Lankford KL, Kocsis JD, Radtke C. Myelination and nodal formation of regenerated peripheral nerve fibers following transplantation of acutely prepared olfactory ensheathing cells. Brain Research 2006, 1125: 1-8. PMID: 17112480, PMCID: PMC2673087, DOI: 10.1016/j.brainres.2006.09.089.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedCell Adhesion Molecules, NeuronalCell TransplantationGreen Fluorescent ProteinsImmunohistochemistryMicroscopy, ImmunoelectronMyelin SheathNAV1.6 Voltage-Gated Sodium ChannelNerve RegenerationNeurofilament ProteinsNeurogliaOlfactory BulbRanvier's NodesRatsRats, Sprague-DawleySciatic NeuropathySodium ChannelsTime FactorsConceptsPeripheral nerve fibersPeripheral nervesNodes of RanvierFunctional outcomeAxonal regenerationNerve fibersRegenerated peripheral nerve fibersSciatic nerve crush lesionNerve crush lesionPeripheral-type myelinSpinal cord resultsTransplantation of olfactoryPeripheral axonal regenerationParanodal CasprCrush lesionCord resultsFunctional improvementOlfactory bulbTransection siteTransgenic ratsLesion zoneNerveNodal formationTransplantation siteOECs
2005
Protection of corticospinal tract neurons after dorsal spinal cord transection and engraftment of olfactory ensheathing cells
Sasaki M, Hains BC, Lankford KL, Waxman SG, Kocsis JD. Protection of corticospinal tract neurons after dorsal spinal cord transection and engraftment of olfactory ensheathing cells. Glia 2005, 53: 352-359. PMID: 16288464, PMCID: PMC2605395, DOI: 10.1002/glia.20285.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBenzimidazolesCell CountCell SeparationCell SurvivalCell TransplantationEnzyme-Linked Immunosorbent AssayFluorescent DyesImage Processing, Computer-AssistedImmunohistochemistryIn Situ Nick-End LabelingMotor ActivityNeuronsOlfactory PathwaysPyramidal TractsRatsSpinal Cord InjuriesStilbamidinesConceptsCorticospinal tract neuronsSpinal cordTract neuronsNeuronal lossOEC transplantationDorsal spinal cord transectionPrimary motor cortexCortical projection neuronsSpinal cord transectionTransplantation of olfactoryRat spinal cordOlfactory Ensheathing CellsApoptotic cortical neuronsBDNF levelsNeuroprotective effectsCord transectionFunctional outcomeMotor cortexNeurotrophic moleculesProjection neuronsAxonal regenerationCortical neuronsInjury zoneTransplantationOECs