2017
Exacerbated Leishmaniasis Caused by a Viral Endosymbiont can be Prevented by Immunization with Its Viral Capsid
Castiglioni P, Hartley M, Rossi M, Prevel F, Desponds C, Utzschneider D, Eren R, Zangger H, Brunner L, Collin N, Zehn D, Kuhlmann F, Beverley S, Fasel N, Ronet C. Exacerbated Leishmaniasis Caused by a Viral Endosymbiont can be Prevented by Immunization with Its Viral Capsid. PLOS Neglected Tropical Diseases 2017, 11: e0005240. PMID: 28099431, PMCID: PMC5242429, DOI: 10.1371/journal.pntd.0005240.Peer-Reviewed Original ResearchConceptsSymptomatic relapseVaccinated miceVaccine strategiesPotent innate immunogenSimilar viral infectionsVirus-related complicationsT-cell transferSpecific T cellsPoor treatment responseLesional inflammationSerum transferT helperInitial treatmentC57BL/6 miceNaïve miceLeishmania infectionPreventive benefitsVaccine opportunitiesT cellsTreatment responseImmune responseViral infectionLesion sizeClinical effortsLeishmania guyanensis
2016
Mammalian Innate Immune Response to a Leishmania-Resident RNA Virus Increases Macrophage Survival to Promote Parasite Persistence
Eren R, Reverte M, Rossi M, Hartley M, Castiglioni P, Prevel F, Martin R, Desponds C, Lye L, Drexler S, Reith W, Beverley S, Ronet C, Fasel N. Mammalian Innate Immune Response to a Leishmania-Resident RNA Virus Increases Macrophage Survival to Promote Parasite Persistence. Cell Host & Microbe 2016, 20: 318-328. PMID: 27593513, PMCID: PMC5493041, DOI: 10.1016/j.chom.2016.08.001.Peer-Reviewed Original ResearchConceptsLeishmania RNA virus 1Innate immune responseParasite persistenceImmune responseMiR-155Anti-viral innate immune responsesMacrophage survivalMiR-155-deficient miceTLR-3 activationMiR-155 expressionMammalian host responseMammalian innate immune responseLesional macrophagesParasitic infectionsHost responseDisease severityParasite burdenLeishmania guyanensisPharmacological inhibitionVirus 1Akt phosphorylationAkt activationReduced levelsSurvivalMice
2013
The therapeutic potential of immune cross‐talk in leishmaniasis
Hartley M, Kohl K, Ronet C, Fasel N. The therapeutic potential of immune cross‐talk in leishmaniasis. Clinical Microbiology And Infection 2013, 19: 119-130. PMID: 23398405, DOI: 10.1111/1469-0691.12095.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntiprotozoal AgentsHumansImmunotherapyLeishmaniaLeishmaniasisMammalsRNA VirusesConceptsMetastatic leishmaniasisCutaneous leishmaniasisLeishmania parasitesSelf-healing lesionsProtozoan parasitic diseaseEffective antileishmanial drugsSpecies of LeishmaniaDestructive lesionsImmune homeostasisCurrent treatmentTherapeutic strategiesImmune pathwaysNew drug targetsTherapeutic potentialParasitic diseasesAntileishmanial drugsLeishmaniasisLesionsPrevalent formDiseaseDrug targetsRNA virusesTreatmentVariable effectsParasitesDetection of Leishmania RNA Virus in Leishmania Parasites
Zangger H, Ronet C, Desponds C, Kuhlmann FM, Robinson J, Hartley MA, Prevel F, Castiglioni P, Pratlong F, Bastien P, Müller N, Parmentier L, Saravia NG, Beverley SM, Fasel N. Detection of Leishmania RNA Virus in Leishmania Parasites. PLOS Neglected Tropical Diseases 2013, 7: e2006. PMID: 23326619, PMCID: PMC3542153, DOI: 10.1371/journal.pntd.0002006.Peer-Reviewed Original ResearchConceptsLeishmania RNA virusCutaneous leishmaniasisSkin lesionsPresence of LRVHyper-inflammatory immune responsePrimary skin lesionsUlcerated skin lesionsOverall exacerbationsSignificant morbidityInfected miceLesion biopsyRNA virusesSecondary lesionsImmune responseHigh riskNew World Leishmania speciesAggressive phenotypeLeishmania strainsLeishmania parasitesPatient samplesViral detectionMonoclonal antibodiesNasopharyngeal tissuesParasite strainsMetastatic phenotype