2021
Activation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling
Deng H, Min E, Baeyens N, Coon BG, Hu R, Zhuang ZW, Chen M, Huang B, Afolabi T, Zarkada G, Acheampong A, McEntee K, Eichmann A, Liu F, Su B, Simons M, Schwartz MA. Activation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2105339118. PMID: 34504019, PMCID: PMC8449390, DOI: 10.1073/pnas.2105339118.Peer-Reviewed Original ResearchConceptsLow fluid shear stressFluid shear stressNuclear translocationSmad linker regionTransmembrane protein Neuropilin-1Target gene expressionCyclin-dependent kinasesBone morphogenetic proteinEC-specific deletionSmad2/3 nuclear translocationNuclear localizationHigh fluid shear stressLinker regionMorphogenetic proteinsGene expressionRegulatory mechanismsActivation of Smad2/3Receptor ALK5Smad2/3 phosphorylationTranslocationCell sensingEndothelial cell (EC) sensingPhosphorylationALK5Smad2/3
2017
VE-Cadherin Phosphorylation Regulates Endothelial Fluid Shear Stress Responses through the Polarity Protein LGN
Conway DE, Coon BG, Budatha M, Arsenovic PT, Orsenigo F, Wessel F, Zhang J, Zhuang Z, Dejana E, Vestweber D, Schwartz MA. VE-Cadherin Phosphorylation Regulates Endothelial Fluid Shear Stress Responses through the Polarity Protein LGN. Current Biology 2017, 27: 2219-2225.e5. PMID: 28712573, PMCID: PMC5667920, DOI: 10.1016/j.cub.2017.06.020.Peer-Reviewed Original ResearchConceptsSrc family kinasesProtein LGNCytoplasmic tyrosinesVE-cadherinVascular endothelial growth factor receptorVE-cadherin functionJunctional complexesRespective cytoplasmic domainsBlood vessel developmentVE-cadherin phosphorylationTransduce forcesTransduce signalsCytoplasmic domainFamily kinasesBlood vessel remodelingGrowth factor receptorVEGFR activationPECAM-1Stress responseComplex consistingFluid shear stressVessel developmentFlow-dependent vascular remodelingSpecific poolPhosphorylation
2013
Endothelial Cell Sensing of Flow Direction
Wang C, Baker BM, Chen CS, Schwartz MA. Endothelial Cell Sensing of Flow Direction. Arteriosclerosis Thrombosis And Vascular Biology 2013, 33: 2130-2136. PMID: 23814115, PMCID: PMC3812824, DOI: 10.1161/atvbaha.113.301826.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonAnimalsAtherosclerosisCattleCell Culture TechniquesCell ShapeCells, CulturedEndothelial CellsEnzyme ActivationHemodynamicsInflammationMechanotransduction, CellularNF-kappa BNitric OxideNitric Oxide Synthase Type IIIOscillometryPhosphorylationProto-Oncogene Proteins c-aktReactive Oxygen SpeciesRegional Blood FlowStress, MechanicalTime FactorsConceptsEndothelial cellsEndothelial nitric oxide synthaseEndothelial nitric oxide synthase pathwayNitric oxide synthase pathwayNitric oxide synthaseOxide synthase pathwayAtherosclerosis-prone regionsInflammatory activationInflammatory effectsOxide synthaseEndothelial cell responsesCell responsesReactive oxygen productionDisturbed flowNitric oxideNuclear factorSimilar effectsActivationCellsSynthase pathwayInability of cells
2012
Profilin phosphorylation as a VEGFR effector in angiogenesis
Simons M, Schwartz MA. Profilin phosphorylation as a VEGFR effector in angiogenesis. Nature Cell Biology 2012, 14: 985-987. PMID: 23033049, PMCID: PMC4047563, DOI: 10.1038/ncb2596.Peer-Reviewed Original Researchp21-Activated kinase 4 promotes prostate cancer progression through CREB
Park M, Lee H, Lee C, You S, Kim D, Park B, Kang M, Heo W, Shin E, Schwartz M, Kim E. p21-Activated kinase 4 promotes prostate cancer progression through CREB. Oncogene 2012, 32: 2475-2482. PMID: 22710715, DOI: 10.1038/onc.2012.255.Peer-Reviewed Original ResearchConceptsP21-activated kinase 4Prostate cancer progressionProstate cancerCancer progressionLNCaP-FGC cellsPromising therapeutic targetKinase 4Prostate cancer cellsDU145 prostate cancer cellsSpecific protein kinase A (PKA) inhibitorProtein kinase A (PKA) inhibitorElevation of cAMPNeuroendocrine differentiationNude miceTherapeutic targetActive PAK4Downstream effector pathwaysTumor progressionDecreased expressionTumor formationCancerCancer cellsPC-3ProgressionEffector pathways
2011
JNK2 Promotes Endothelial Cell Alignment under Flow
Hahn C, Wang C, Orr AW, Coon BG, Schwartz MA. JNK2 Promotes Endothelial Cell Alignment under Flow. PLOS ONE 2011, 6: e24338. PMID: 21909388, PMCID: PMC3164210, DOI: 10.1371/journal.pone.0024338.Peer-Reviewed Original ResearchConceptsMitogen-activated protein kinase c-Jun N-terminal kinaseProtein kinase c-Jun N-terminal kinaseC-Jun N-terminal kinaseActin stress fibersN-terminal kinaseFocal adhesionsBasement membrane proteinsMembrane proteinsLaminar shear stressStress fibersGene expressionJNK activityIntegrin activationJNK2 activationEndothelial cell alignmentJNK activationActivated JNKExtracellular matrixInflammatory gene expressionCell alignmentUnexpected connectionEndothelial cellsActivationPathwayCellsLight‐Triggered Myosin Activation for Probing Dynamic Cellular Processes
Goguen BN, Hoffman BD, Sellers JR, Schwartz MA, Imperiali B. Light‐Triggered Myosin Activation for Probing Dynamic Cellular Processes. Angewandte Chemie International Edition 2011, 50: 5667-5670. PMID: 21542072, PMCID: PMC3406609, DOI: 10.1002/anie.201100674.Peer-Reviewed Original Research
2010
Matrix-Specific Protein Kinase A Signaling Regulates p21-Activated Kinase Activation by Flow in Endothelial Cells
Funk SD, Yurdagul A, Green JM, Jhaveri KA, Schwartz MA, Orr AW. Matrix-Specific Protein Kinase A Signaling Regulates p21-Activated Kinase Activation by Flow in Endothelial Cells. Circulation Research 2010, 106: 1394-1403. PMID: 20224042, PMCID: PMC2862370, DOI: 10.1161/circresaha.109.210286.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnti-Inflammatory AgentsBasement MembraneCattleCdc42 GTP-Binding ProteinCells, CulturedCyclic AMP-Dependent Protein KinasesEndothelial CellsEnzyme ActivationEnzyme ActivatorsHumansIloprostInflammationInflammation MediatorsInjections, IntraperitonealIntegrinsMaleMechanotransduction, CellularMiceMice, Inbred C57BLNF-kappa BP21-Activated KinasesPhosphorylationProtein Kinase InhibitorsPulsatile FlowRac GTP-Binding ProteinsRegional Blood FlowStress, MechanicalTime FactorsTransfectionConceptsInflammatory gene expressionNF-kappaB activationInflammatory signalingEndothelial cellsProstacyclin analogue iloprostBasement membrane proteinsBlood flow patternsPKA-dependent inhibitionInflammatory pathwaysAnalogue iloprostGene expressionKappaB activationNF-kappaB.Subendothelial extracellular matrixNuclear factorPAK activationBasement membrane
2009
Focal adhesion kinase modulates activation of NF-κB by flow in endothelial cells
Petzold T, Orr AW, Hahn C, Jhaveri KA, Parsons JT, Schwartz MA. Focal adhesion kinase modulates activation of NF-κB by flow in endothelial cells. American Journal Of Physiology - Cell Physiology 2009, 297: c814-c822. PMID: 19587216, PMCID: PMC2770750, DOI: 10.1152/ajpcell.00226.2009.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell NucleusCells, CulturedEndothelial CellsEndothelium, VascularFocal Adhesion Protein-Tyrosine KinasesHydrogen PeroxideI-kappa B KinaseIntegrinsIntercellular Adhesion Molecule-1MiceNF-kappa BPhosphorylationProtein TransportRac GTP-Binding ProteinsReactive Oxygen SpeciesSignal TransductionStress, MechanicalTranscription Factor RelATumor Necrosis Factor-alphaConceptsFocal adhesion kinaseAdhesion kinaseNF-kappaBRac activationTranscriptional activityDependent genesEndothelial cellsIntegrin activationP65 NF-kappaB subunitDegradation of IkappaBReactive oxygen productionFluid shear stressNF-kappaB subunitsSerine 536Phosphorylation of p65Novel mechanismNF-kappaB activationKinaseNF-kappaB phosphorylationPhosphorylationActivationNF-κBOxygen productionHydrogen peroxideCellsSuppression of RhoG activity is mediated by a syndecan 4–synectin–RhoGDI1 complex and is reversed by PKCα in a Rac1 activation pathway
Elfenbein A, Rhodes JM, Meller J, Schwartz MA, Matsuda M, Simons M. Suppression of RhoG activity is mediated by a syndecan 4–synectin–RhoGDI1 complex and is reversed by PKCα in a Rac1 activation pathway. Journal Of Cell Biology 2009, 186: 75-83. PMID: 19581409, PMCID: PMC2712988, DOI: 10.1083/jcb.200810179.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarrier ProteinsCluster AnalysisEnzyme ActivationFibroblast Growth Factor 2GTP PhosphohydrolasesGuanine Nucleotide Dissociation InhibitorsHeLa CellsHumansMiceMice, KnockoutModels, BiologicalPhosphorylationPhosphoserineProtein Kinase C-alphaRac1 GTP-Binding ProteinRatsRho GTP-Binding ProteinsRho-Specific Guanine Nucleotide Dissociation InhibitorsSyndecan-4ConceptsFibroblast growth factor-2Polarized activationRac1 activationSmall guanosine triphosphatase Rac1Activation pathwayProtein complexesRac activationPlasma membranePhysiological defectsSyndecan-4RhoGDI1Major regulatorInactive stateGrowth factor 2RhoGRhoG activityProteoglycan receptorsEndothelial migrationTernary complexFactor 2Genetic deletionSynectinRac1PKCalphaActivationSrc phosphorylation of RhoGDI2 regulates its metastasis suppressor function
Wu Y, Moissoglu K, Wang H, Wang X, Frierson HF, Schwartz MA, Theodorescu D. Src phosphorylation of RhoGDI2 regulates its metastasis suppressor function. Proceedings Of The National Academy Of Sciences Of The United States Of America 2009, 106: 5807-5812. PMID: 19321744, PMCID: PMC2667073, DOI: 10.1073/pnas.0810094106.Peer-Reviewed Original ResearchMeSH KeywordsCell Line, TumorDisease ProgressionGene Expression ProfilingGuanine Nucleotide Dissociation InhibitorsHumansImmunohistochemistryNeoplasm MetastasisPhosphorylationProtein BindingRho Guanine Nucleotide Dissociation Inhibitor betaRho-Specific Guanine Nucleotide Dissociation InhibitorsSrc-Family KinasesTumor Suppressor ProteinsUrinary Bladder NeoplasmsConceptsMetastasis suppressionSrc levelsSrc phosphorylation siteProtein interaction analysisMetastasis suppressor functionRhoGDI2 expressionSuppressor of metastasisGene expression profilingRhoGDI2 functionTyr-153Kinase bindsPhosphorylation sitesAmount of Rac1Expression profilingInteraction partnersSrc phosphorylationSrc inhibitorStable expressionBladder cancerSuppressor functionRhoGDI2Cancer cell linesCell membraneSrcPhosphorylationThe Subendothelial Extracellular Matrix Modulates JNK Activation by Flow
Hahn C, Orr AW, Sanders JM, Jhaveri KA, Schwartz MA. The Subendothelial Extracellular Matrix Modulates JNK Activation by Flow. Circulation Research 2009, 104: 995-1003. PMID: 19286608, PMCID: PMC2702158, DOI: 10.1161/circresaha.108.186486.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApolipoproteins EAtherosclerosisBasement MembraneCattleCell Culture TechniquesCells, CulturedCollagenDisease Models, AnimalEndothelial CellsEnzyme ActivationExtracellular MatrixFibronectinsHemorheologyInflammationIntegrinsJNK Mitogen-Activated Protein KinasesMiceMice, Inbred C57BLMice, KnockoutMitogen-Activated Protein Kinase KinasesOscillometryP21-Activated KinasesPhosphorylationRegional Blood FlowStress, Mechanical
2008
Regulation of LKB1/STRAD Localization and Function by E-Cadherin
Sebbagh M, Santoni MJ, Hall B, Borg JP, Schwartz MA. Regulation of LKB1/STRAD Localization and Function by E-Cadherin. Current Biology 2008, 19: 37-42. PMID: 19110428, PMCID: PMC2773019, DOI: 10.1016/j.cub.2008.11.033.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Vesicular TransportAdherens JunctionsAMP-Activated Protein Kinase KinasesAMP-Activated Protein KinasesBlotting, WesternCaco-2 CellsCadherinsCell FractionationDNA PrimersFluorescence Resonance Energy TransferHumansMultiprotein ComplexesPhosphorylationProtein Serine-Threonine KinasesReverse Transcriptase Polymerase Chain ReactionConceptsAdherens junctionsLKB1 complexE-cadherinE-cadherin-mediated adherens junctionsAMPK phosphorylationEpithelial apicobasal polarityCell-matrix contactsCell energy metabolismPseudokinase STRADLKB1 kinaseProtein MO25Apicobasal polarityEpithelial polarityCellular processesFluorescence resonance energy transferFamily kinasesKinase activityTumor suppressionTumor suppressorResonance energy transferKinaseUpstream factorsEnergy metabolismSTRADEpithelial cells
2007
Blocking p21-activated Kinase Reduces Lipopolysaccharide-induced Acute Lung Injury by Preventing Polymorphonuclear Leukocyte Infiltration
Reutershan J, Stockton R, Zarbock A, Sullivan GW, Chang D, Scott D, Schwartz MA, Ley K. Blocking p21-activated Kinase Reduces Lipopolysaccharide-induced Acute Lung Injury by Preventing Polymorphonuclear Leukocyte Infiltration. American Journal Of Respiratory And Critical Care Medicine 2007, 175: 1027-1035. PMID: 17322107, PMCID: PMC1899271, DOI: 10.1164/rccm.200612-1822oc.Peer-Reviewed Original ResearchConceptsAcute lung injuryLung injuryPMN migrationPolymorphonuclear leukocytesAlveolar spaceLipopolysaccharide-induced lung injuryMurine lung injuryPolymorphonuclear leukocyte infiltrationLeukocyte-endothelial interactionsAlveolo-capillary membraneOxidative burstRole of PAKsLeukocyte infiltrationChemokine receptorsLung interstitiumMurine modelExcessive recruitmentPMN chemoattractantInjuryCytoskeletal actin polymerizationAdhesion moleculesCritical mediatorCell migrationAttractive targetPAK phosphorylationMatrix-specific p21-activated kinase activation regulates vascular permeability in atherogenesis
Orr AW, Stockton R, Simmers MB, Sanders JM, Sarembock IJ, Blackman BR, Schwartz MA. Matrix-specific p21-activated kinase activation regulates vascular permeability in atherogenesis. Journal Of Cell Biology 2007, 176: 719-727. PMID: 17312022, PMCID: PMC2064028, DOI: 10.1083/jcb.200609008.Peer-Reviewed Original ResearchConceptsP21-activated kinaseP21-activated kinase activationAtherosclerosis-prone regionsCell-cell junctionsBasement membrane proteinsMembrane proteinsPAK phosphorylationActivation of PAKKinase activationPAK activationEndothelial permeabilityFibronectinActivationSubendothelial monocytesVivoKinasePhosphorylationProteinVascular permeabilityAtherogenesisRecruitmentCells
2005
Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization
del Pozo MA, Balasubramanian N, Alderson NB, Kiosses WB, Grande-García A, Anderson RG, Schwartz MA. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature Cell Biology 2005, 7: 901-908. PMID: 16113676, PMCID: PMC1351395, DOI: 10.1038/ncb1293.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCaveolaeCaveolin 1CaveolinsCell AdhesionCell ProliferationDynamin IIEndocytosisExtracellular MatrixExtracellular Signal-Regulated MAP KinasesFocal AdhesionsIntegrinsMembrane MicrodomainsMiceMice, KnockoutMicroscopy, Electron, TransmissionNeoplasm InvasivenessNeoplasmsNIH 3T3 CellsPhosphatidylinositol 3-KinasesPhosphorylationRac GTP-Binding ProteinsConceptsCaveolin-1Cholesterol-enriched membrane microdomainsPhosphatidylinositol-3-OH kinaseCell detachmentNovel molecular mechanismCholesterol-rich domainsInhibition of ERKMembrane microdomainsFocal adhesionsDynamin 2Plasma membraneMolecular mechanismsTumor suppressionTyr-14Multiple pathwaysNormal cellsInternalizationERKRacPathwayCaveolaeKinasePhosphorylationAdhesionMicrodomainsIntegrin Activation and Matrix Binding Mediate Cellular Responses to Mechanical Stretch*
Katsumi A, Naoe T, Matsushita T, Kaibuchi K, Schwartz MA. Integrin Activation and Matrix Binding Mediate Cellular Responses to Mechanical Stretch*. Journal Of Biological Chemistry 2005, 280: 16546-16549. PMID: 15760908, DOI: 10.1074/jbc.c400455200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell AdhesionEnzyme ActivationEnzyme InhibitorsExtracellular MatrixExtracellular Signal-Regulated MAP KinasesIntegrin alphaVbeta3IntegrinsJNK Mitogen-Activated Protein KinasesLigandsMAP Kinase Kinase 4MiceMitogen-Activated Protein Kinase KinasesNIH 3T3 CellsPhosphatidylinositol 3-KinasesPhosphorylationProtein ConformationSignal TransductionStress, MechanicalTime FactorsConceptsIntegrin activationExtracellular matrix proteinsRole of integrinsConformational activationBiochemical signalsNIH3T3 cellsMolecular mechanismsCellular responsesMatrix proteinsExtracellular matrixCell growthMechanical stretch stimulationIntegrin alphavbeta3IntegrinsMechanical tensionMechanical stretchCritical determinantStretch stimulationActivationPhosphoinositolMechanotransductionJNKProteinApoptosisDifferentiation
2004
p21-activated Kinase Regulates Endothelial Permeability through Modulation of Contractility*
Stockton RA, Schaefer E, Schwartz MA. p21-activated Kinase Regulates Endothelial Permeability through Modulation of Contractility*. Journal Of Biological Chemistry 2004, 279: 46621-46630. PMID: 15333633, DOI: 10.1074/jbc.m408877200.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsBlotting, WesternCattleCell CommunicationCells, CulturedCytokinesCytoskeletonEndothelium, VascularEnzyme ActivationHumansInflammationIschemiaMicroscopy, FluorescenceMuscle ContractionMyosin Light ChainsP21-Activated KinasesPeptidesPhosphorylationProtein Serine-Threonine KinasesProtein TransportThrombinTime FactorsTransfectionUmbilical VeinsConceptsP21-activated kinaseClose cell-cell associationsEndothelial cell-cell junctionsCell-cell junctionsActin stress fibersCell-cell associationsSuitable drug targetsGrowth factorMyosin phosphorylationHuman umbilical vein endothelial cellsCentral regulatorStress fibersUmbilical vein endothelial cellsEndothelial cellsPAK activationDrug targetsVein endothelial cellsCell contractilityMultiple growth factorsParacellular poresEndothelial permeabilityPhosphorylationPathological processesPathological conditionsPotential role
2003
Guanine Exchange-Dependent and -Independent Effects of Vav1 on Integrin-Induced T Cell Spreading
del Pozo MA, Schwartz MA, Hu J, Kiosses WB, Altman A, Villalba M. Guanine Exchange-Dependent and -Independent Effects of Vav1 on Integrin-Induced T Cell Spreading. The Journal Of Immunology 2003, 170: 41-47. PMID: 12496381, DOI: 10.4049/jimmunol.170.1.41.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCdc42 GTP-Binding ProteinCell Cycle ProteinsCell SizeCells, CulturedDrug SynergismEnzyme ActivationFibronectinsGuanine Nucleotide Exchange FactorsHumansHybridomasIntegrinsJNK Mitogen-Activated Protein KinasesJurkat CellsMiceMitogen-Activated Protein KinasesP21-Activated KinasesPhosphorylationProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-vavRac GTP-Binding ProteinsT-Lymphocytes
2002
Networks and crosstalk: integrin signalling spreads
Schwartz MA, Ginsberg MH. Networks and crosstalk: integrin signalling spreads. Nature Cell Biology 2002, 4: e65-e68. PMID: 11944032, DOI: 10.1038/ncb0402-e65.Peer-Reviewed Original Research