Biologically active fragment of a human tRNA synthetase inhibits fluid shear stress-activated responses of endothelial cells
Tzima E, Reader J, Irani-Tehrani M, Ewalt K, Schwartz M, Schimmel P. Biologically active fragment of a human tRNA synthetase inhibits fluid shear stress-activated responses of endothelial cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2003, 100: 14903-14907. PMID: 14630953, PMCID: PMC299850, DOI: 10.1073/pnas.2436330100.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesAnimalsCattleCytoskeletonEndothelium, VascularGenetic VectorsHumansLuciferasesMicroscopy, FluorescenceMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3Mitogen-Activated Protein KinasesNeovascularization, PathologicNitric Oxide SynthaseProtein Serine-Threonine KinasesProtein Structure, TertiaryProto-Oncogene ProteinsProto-Oncogene Proteins c-aktSignal TransductionStress, MechanicalTemperatureTime FactorsTranscription, GeneticConceptsT2-TrpRSStress-responsive gene expressionHuman tryptophanyl-tRNA synthetaseStress-responsive genesExtracellular signal-regulated kinase 1/2Growth factor stimulationHuman tRNA SynthetaseSignal-regulated kinase 1/2Natural splice variantProtein kinase BShear stress-responsive genesVascular endothelial growth factor (VEGF) stimulationTryptophanyl-tRNA synthetaseVascular homeostasisGrowth factor-induced angiogenesisVascular endothelial growth factor-induced angiogenesisCytoskeletal reorganizationProtein kinaseFactor stimulationAngiogenesis-related activitiesGene expressionKinase BKinase 1/2TRNA synthetaseEndothelial cell responses