2011
Conditional Peripheral Membrane Proteins: Facing up to Limited Specificity
Moravcevic K, Oxley CL, Lemmon MA. Conditional Peripheral Membrane Proteins: Facing up to Limited Specificity. Structure 2011, 20: 15-27. PMID: 22193136, PMCID: PMC3265387, DOI: 10.1016/j.str.2011.11.012.Peer-Reviewed Original Research
2010
Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor
Alvarado D, Klein DE, Lemmon MA. Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor. Cell 2010, 142: 568-579. PMID: 20723758, PMCID: PMC2925043, DOI: 10.1016/j.cell.2010.07.015.Peer-Reviewed Original ResearchConceptsEGFR extracellular regionEpidermal growth factor receptorExtracellular regionEGF receptorDifferent signaling propertiesLigand-binding eventsLigand-induced dimerizationIntracellular tyrosine kinase domainNegative cooperativityCooperative ligand bindingTyrosine kinase domainAllosteric regulationEGF-binding sitesKinase domainFactor bindingGrowth factor receptorGrowth factor bindingStructural basisLigand bindingEGFR ligandsSignaling propertiesFactor receptorReduced affinityAsymmetric dimerUnoccupied sites
2008
Structural basis for EGFR ligand sequestration by Argos
Klein DE, Stayrook SE, Shi F, Narayan K, Lemmon MA. Structural basis for EGFR ligand sequestration by Argos. Nature 2008, 453: 1271-1275. PMID: 18500331, PMCID: PMC2526102, DOI: 10.1038/nature06978.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBinding SitesCell LineCrystallography, X-RayDrosophila melanogasterDrosophila ProteinsEpidermal Growth FactorErbB ReceptorsEye ProteinsHumansLigandsMembrane ProteinsModels, MolecularNerve Tissue ProteinsProtein Structure, TertiaryReceptors, Transforming Growth Factor betaSpodopteraConceptsEpidermal growth factor receptorLigand sequestrationEGFR ligand SpitzLigand SpitzMammalian counterpartsGrowth factor receptorStructural basisUrokinase plasminogen activatorStructural homologuesEGFR ligandsFactor receptorAnticancer therapeuticsStructural resemblanceHomologuesPlasminogen activatorReceptorsSequestrationProteinActivatorLigandsSpitzTGFTherapeuticsDomain
2006
Argos Mutants Define an Affinity Threshold for Spitz Inhibition in Vivo *
Alvarado D, Evans TA, Sharma R, Lemmon MA, Duffy JB. Argos Mutants Define an Affinity Threshold for Spitz Inhibition in Vivo *. Journal Of Biological Chemistry 2006, 281: 28993-29001. PMID: 16870613, DOI: 10.1074/jbc.m603782200.Peer-Reviewed Original ResearchPalmitoylation of the EGFR Ligand Spitz by Rasp Increases Spitz Activity by Restricting Its Diffusion
Miura GI, Buglino J, Alvarado D, Lemmon MA, Resh MD, Treisman JE. Palmitoylation of the EGFR Ligand Spitz by Rasp Increases Spitz Activity by Restricting Its Diffusion. Developmental Cell 2006, 10: 167-176. PMID: 16459296, DOI: 10.1016/j.devcel.2005.11.017.Peer-Reviewed Original ResearchMeSH KeywordsAcyltransferasesAnimalsBase SequenceBiological Transport, ActiveCell LineCell MembraneCysteineDNADrosophilaDrosophila ProteinsEpidermal Growth FactorErbB ReceptorsFemaleGenes, InsectIn Vitro TechniquesLigandsMaleMembrane ProteinsModels, BiologicalMutagenesis, Site-DirectedMutationOvaryPalmitic AcidRecombinant ProteinsTransfectionWings, AnimalConceptsEpidermal growth factor receptorDrosophila epidermal growth factor receptorEGFR ligand SpitzPlasma membrane associationN-terminal cysteine residueLigand SpitzMembrane associationWnt familyDevelopmental functionsGrowth factor receptorCysteine residuesBiological functionsLipid modificationPalmitoylationIntracellular proteinsCultured cellsCell membraneFactor receptorSpitzReduced activityVivoTransmembraneHedgehogProteinActivity
2004
Svp1p defines a family of phosphatidylinositol 3,5‐bisphosphate effectors
Dove SK, Piper RC, McEwen RK, Yu JW, King MC, Hughes DC, Thuring J, Holmes AB, Cooke FT, Michell RH, Parker PJ, Lemmon MA. Svp1p defines a family of phosphatidylinositol 3,5‐bisphosphate effectors. The EMBO Journal 2004, 23: 1922-1933. PMID: 15103325, PMCID: PMC404323, DOI: 10.1038/sj.emboj.7600203.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAutophagy-Related ProteinsBase SequenceCloning, MolecularEndosomesEscherichia coliGene ComponentsGenetic VectorsGreen Fluorescent ProteinsMembrane ProteinsMolecular Sequence DataPhosphatidylinositol PhosphatesPhosphotransferases (Alcohol Group Acceptor)PlasmidsProtein BindingProtein FoldingProtein TransportRhinovirusSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence AlignmentSequence Analysis, DNAVacuolesConceptsFamily of phosphatidylinositolSaccharomyces cerevisiae mutantsDrosophila homologueCerevisiae mutantsMembrane recyclingVesicle recyclingVacuole enlargementVacuole membraneMultivesicular bodiesRelated proteinsLysosomal compartmentMarker proteinsExquisite specificityEffectorsProteinPhosphatidylinositolVacuolesEukaryotesCellsMutantsLocalisesGolgiHomologuesMVBGenes
1996
Ala‐insertion scanning mutagenesis of the glycophorin a transmembrane helix: A rapid way to map helix‐helix interactions in integral membrane proteins
Mingarro I, Whitley P, Von Heijne G, Lemmon M. Ala‐insertion scanning mutagenesis of the glycophorin a transmembrane helix: A rapid way to map helix‐helix interactions in integral membrane proteins. Protein Science 1996, 5: 1339-1341. PMID: 8819166, PMCID: PMC2143459, DOI: 10.1002/pro.5560050712.Peer-Reviewed Original Research
1995
Scratching the surface with the PH domain
Ferguson K, Lemmon M, Sigler P, Schlessinger J. Scratching the surface with the PH domain. Nature Structural & Molecular Biology 1995, 2: 715-718. PMID: 7552736, DOI: 10.1038/nsb0995-715.Commentaries, Editorials and Letters
1994
Specificity and promiscuity in membrane helix interactions
Lemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions. FEBS Letters 1994, 346: 17-20. PMID: 8206151, DOI: 10.1016/0014-5793(94)00467-6.Peer-Reviewed Original ResearchSpecificity and promiscuity in membrane helix interactions
Lemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions. Quarterly Reviews Of Biophysics 1994, 27: 157-218. PMID: 7984776, DOI: 10.1017/s0033583500004522.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsTransmembrane α-helicesMembrane proteinsΑ-helixMembrane protein foldingMembrane-spanning portionTransmembrane helix associationHelix-helix interactionsParticular helicesProtein foldingHelix associationHelix interactionsProsthetic groupLipid bilayersCharge-charge interactionsStereochemical fitFoldingProteinAccessible statesSpecificityOligomerizationInteractionPromiscuityHelixAssemblyA dimerization motif for transmembrane α–helices
Lemmon M, Treutlein H, Adams P, Brünger A, Engelman D. A dimerization motif for transmembrane α–helices. Nature Structural & Molecular Biology 1994, 1: 157-163. PMID: 7656033, DOI: 10.1038/nsb0394-157.Peer-Reviewed Original ResearchConceptsTransmembrane α-helicesHydrophobic transmembrane α-helicesSpecific helix-helix interactionsΑ-helixIntegral membrane proteinsHelix-helix interactionsHelix-helix interfaceDimerization motifSpecific dimerizationMembrane proteinsHelix associationFunctional analysisAmino acidsSuch motifsLipid bilayersMotifParticular motifsFoldingDimerizationSuch interactionsComplex membranesProteinOligomerizationVariety of systemsInteraction