2024
Allosteric activation of the co-receptor BAK1 by the EFR receptor kinase initiates immune signaling
Mühlenbeck H, Tsutsui Y, Lemmon M, Bender K, Zipfel C. Allosteric activation of the co-receptor BAK1 by the EFR receptor kinase initiates immune signaling. ELife 2024, 12: rp92110. PMID: 39028038, PMCID: PMC11259431, DOI: 10.7554/elife.92110.Peer-Reviewed Original ResearchMeSH KeywordsAllosteric RegulationArabidopsisArabidopsis ProteinsPhosphorylationPlant ImmunityProtein KinasesProtein Serine-Threonine KinasesSignal TransductionConceptsKinase domainReceptor kinasePhosphorylation-dependent conformational changesActive conformationIntragenic suppressor mutationsCo-receptor BAK1Kinase-dead variantPlant receptor kinasesProtein kinase domainLeucine-rich repeatNon-catalytic functionsIntracellular kinase domainCo-receptorLRR-RKsSuppressor mutationsTrans-phosphorylationPseudokinase domainActivation loopActive kinaseAllosteric activationTransmembrane signalingBAK1Immune signalingRegulate signalingSignaling activity
2022
Looking lively: emerging principles of pseudokinase signaling
Sheetz JB, Lemmon MA. Looking lively: emerging principles of pseudokinase signaling. Trends In Biochemical Sciences 2022, 47: 875-891. PMID: 35585008, PMCID: PMC9464697, DOI: 10.1016/j.tibs.2022.04.011.Peer-Reviewed Original Research
2021
Phosphatidylserine binding directly regulates TIM-3 function
Smith CM, Li A, Krishnamurthy N, Lemmon MA. Phosphatidylserine binding directly regulates TIM-3 function. Biochemical Journal 2021, 478: 3331-3349. PMID: 34435619, PMCID: PMC8454703, DOI: 10.1042/bcj20210425.Peer-Reviewed Original ResearchConceptsTim-3T cell receptorTherapeutic targetCo-signaling receptorsTim-3 functionTim-3 ligandTim-3 signalingCo-inhibitory receptorsCo-stimulatory receptorsImmune modulation approachesIL-2 secretionPotential therapeutic targetNF-κB signalingImportant therapeutic targetPD-1Jurkat cellsCultured Jurkat cellsT cellsCell receptorTCR stimulationReceptorsImportance of phosphatidylserineDifferent studiesCellsSignaling
2019
Computational algorithms for in silico profiling of activating mutations in cancer
Jordan EJ, Patil K, Suresh K, Park JH, Mosse YP, Lemmon MA, Radhakrishnan R. Computational algorithms for in silico profiling of activating mutations in cancer. Cellular And Molecular Life Sciences 2019, 76: 2663-2679. PMID: 30982079, PMCID: PMC6589134, DOI: 10.1007/s00018-019-03097-2.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsBiomarkers, TumorComputational BiologyComputer SimulationHumansMutationNeoplasmsSignal TransductionConceptsTarget proteinsSingle nucleotide polymorphismsB-RafSerine/threonine-protein kinase B-RafDifferent target proteinsEffects of mutationsStructure-based computational approachKinase domainStructure-based methodsStructure-based modelProtein structureProtein activationSilico profilingAnaplastic lymphoma kinaseInteraction of inhibitorsMutational landscapeHuman cancersPoint mutationsProteinMutationsMutational patternsDifferent mutationsActivation statusComputational approachLymphoma kinase
2018
Flipping ATP to AMPlify Kinase Functions
Sheetz JB, Lemmon MA. Flipping ATP to AMPlify Kinase Functions. Cell 2018, 175: 641-642. PMID: 30340038, PMCID: PMC6421561, DOI: 10.1016/j.cell.2018.10.011.Peer-Reviewed Original ResearchRegulation of Kinase Activity in the Caenorhabditis elegans EGF Receptor, LET-23
Liu L, Thaker TM, Freed DM, Frazier N, Malhotra K, Lemmon MA, Jura N. Regulation of Kinase Activity in the Caenorhabditis elegans EGF Receptor, LET-23. Structure 2018, 26: 270-281.e4. PMID: 29358026, PMCID: PMC5803352, DOI: 10.1016/j.str.2017.12.012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCaenorhabditis elegansCaenorhabditis elegans ProteinsDimerizationErbB ReceptorsPhosphorylationPhosphotransferasesSignal TransductionConceptsLET-23Allosteric activatorEGF receptorAllosteric activation mechanismFull-length receptorCaenorhabditis elegansActive kinaseKinase domainAllosteric activationKinase activityReceptor dimersEGFR kinaseKinaseHuman EGFRDistinct rolesHuman counterpartActivation mechanismActivatorReceptorsElegansHeterodimerizationMutationsCrystal structureRegulationEGFR
2016
The Dark Side of Cell Signaling: Positive Roles for Negative Regulators
Lemmon MA, Freed DM, Schlessinger J, Kiyatkin A. The Dark Side of Cell Signaling: Positive Roles for Negative Regulators. Cell 2016, 164: 1172-1184. PMID: 26967284, PMCID: PMC4830124, DOI: 10.1016/j.cell.2016.02.047.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsFeedback, PhysiologicalHumansPhosphorylationReceptor Protein-Tyrosine KinasesReceptors, G-Protein-CoupledSignal TransductionConceptsCell signalingNegative regulatorGTP/GDP cycleNew cellular statesKinase/phosphataseCell surface receptorsCellular statesSignal terminationSwitch-like transitionsSuch regulatorsReceptor internalizationGDP cycleReceptor signalingSignal activationKinetic proofreadingSignalingRegulatorOnly negative effectNegative signalsPositive roleImportant roleNegative effectsProofreadingPhosphataseInternalization
2013
Receptor tyrosine kinases with intracellular pseudokinase domains
Mendrola JM, Shi F, Park JH, Lemmon MA. Receptor tyrosine kinases with intracellular pseudokinase domains. Biochemical Society Transactions 2013, 41: 1029-1036. PMID: 23863174, PMCID: PMC3777422, DOI: 10.1042/bst20130104.Peer-Reviewed Original ResearchConceptsWeak kinase activityKinase activitySignificant kinase activityReceptor tyrosine kinasesPseudokinase domainHuman proteomeProtein kinaseImportant residuesWnt receptorsTyrosine kinaseEGFR familyKinaseFunctional studiesRTKPseudokinasesPseudokinaseProteomeReceptorsWntNew lightErbB3MutationsResiduesActivityRecent work
2012
Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma
Carpenter EL, Haglund EA, Mace EM, Deng D, Martinez D, Wood AC, Chow AK, Weiser DA, Belcastro LT, Winter C, Bresler SC, Asgharzadeh S, Seeger R, Zhao H, Guo R, Christensen J, Orange J, Pawel B, Lemmon M, Mossé Y. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene 2012, 31: 4859-4867. PMID: 22266870, PMCID: PMC3730824, DOI: 10.1038/onc.2011.647.Peer-Reviewed Original ResearchMeSH KeywordsAnaplastic Lymphoma KinaseAntibodies, MonoclonalAntigens, NeoplasmCell DeathCell Line, TumorCell ProliferationCrizotinibHumansMutationNeuroblastomaPhosphorylationProtein Kinase InhibitorsProtein-Tyrosine KinasesProto-Oncogene Proteins c-metPyrazolesPyridinesReceptor Protein-Tyrosine KinasesSignal TransductionConceptsAnaplastic lymphoma kinaseLymphoma kinaseHuman neuroblastomaSmall molecule tyrosine kinase inhibitorsAntibody-dependent cellular cytotoxicityReceptor tyrosine kinasesDevastating pediatric cancerSympathetic nervous systemALK inhibitor crizotinibComplementary therapeutic approachALK-positive tumorsPromising therapeutic strategyTyrosine kinase inhibitorsAntibody-induced growth inhibitionCell linesTractable therapeutic targetWild-type ALKTyrosine kinaseALK aberrationsNeuroblastoma patientsLung cancerALK mutationsInhibitor crizotinibCellular cytotoxicityALK antibody
2010
Cell Signaling by Receptor Tyrosine Kinases
Lemmon MA, Schlessinger J. Cell Signaling by Receptor Tyrosine Kinases. Cell 2010, 141: 1117-1134. PMID: 20602996, PMCID: PMC2914105, DOI: 10.1016/j.cell.2010.06.011.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsEnzyme ActivationHumansNeoplasmsReceptor Protein-Tyrosine KinasesSignal TransductionConceptsReceptor tyrosine kinasesTyrosine kinaseIntracellular tyrosine kinase domainRecent structural studiesGrowth factor ligandsTyrosine kinase domainUnexpected diversityKinase domainCell signalingLigand bindingCellular responsesFactor ligandRTK mutationsKinaseStructural studiesActivationSignalingDiversityMutationsDimerizationMechanismBindingDomain
2008
Functional selectivity of EGF family peptide growth factors: Implications for cancer
Wilson KJ, Gilmore JL, Foley J, Lemmon MA, Riese DJ. Functional selectivity of EGF family peptide growth factors: Implications for cancer. Pharmacology & Therapeutics 2008, 122: 1-8. PMID: 19135477, PMCID: PMC2665203, DOI: 10.1016/j.pharmthera.2008.11.008.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntineoplastic AgentsDrug Delivery SystemsEpidermal Growth FactorErbB ReceptorsHumansLigandsNeoplasmsSignal TransductionConceptsEGF family membersPeptide growth factorsFunctional selectivityGrowth factorErbB family receptorsFamily membersNeck cancerReceptor couplingReceptor tyrosine phosphorylationMalignant phenotypeDivergent biological responsesSame receptorFamily receptorsEGF familyReceptorsErbB receptorsG proteinsCancerCancer chemotherapeuticsCell culturesLigand activityTyrosine phosphorylationColorectalSubsequent differencesBiological responses
2006
Argos Mutants Define an Affinity Threshold for Spitz Inhibition in Vivo *
Alvarado D, Evans TA, Sharma R, Lemmon MA, Duffy JB. Argos Mutants Define an Affinity Threshold for Spitz Inhibition in Vivo *. Journal Of Biological Chemistry 2006, 281: 28993-29001. PMID: 16870613, DOI: 10.1074/jbc.m603782200.Peer-Reviewed Original Research
2004
The p21-activated Protein Kinase-related Kinase Cla4 Is a Coincidence Detector of Signaling by Cdc42 and Phosphatidylinositol 4-Phosphate*
Wild AC, Yu JW, Lemmon MA, Blumer KJ. The p21-activated Protein Kinase-related Kinase Cla4 Is a Coincidence Detector of Signaling by Cdc42 and Phosphatidylinositol 4-Phosphate*. Journal Of Biological Chemistry 2004, 279: 17101-17110. PMID: 14766750, DOI: 10.1074/jbc.m314035200.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAmino Acid SequenceCdc42 GTP-Binding ProteinCell MembraneDose-Response Relationship, DrugEscherichia coliGenotypeGreen Fluorescent ProteinsImmunoblottingKineticsLipid MetabolismLuminescent ProteinsMitosisModels, GeneticMolecular Sequence DataMutationP21-Activated KinasesPhosphatidylinositol PhosphatesPlasmidsPoint MutationProtein BindingProtein Serine-Threonine KinasesProtein Structure, TertiaryRecombinant Fusion ProteinsSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence Homology, Amino AcidSignal TransductionSurface Plasmon ResonanceTemperatureConceptsPleckstrin homologyPH domainRho-type GTPase Cdc42P21-activated protein kinaseMitotic exit networkPlasma membrane poolSignal transduction pathwaysPhosphoinositide speciesGolgi poolCell morphogenesisEukaryotic cellsGTPase Cdc42Cdc42 bindingKinase mutantsMammalian cellsCla4Protein kinaseTransduction pathwaysCoincidence detectorMembrane poolPlasma membraneCdc42Kinase activityPI4PBiological processes
2003
Phosphoinositide Recognition Domains
Lemmon MA. Phosphoinositide Recognition Domains. Traffic 2003, 4: 201-213. PMID: 12694559, DOI: 10.1034/j.1600-0854.2004.00071.x.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesModels, MolecularPhosphatidylinositolsSecond Messenger SystemsSignal TransductionConceptsPleckstrin homology domainPhox homologyHomology domainEpsin ENTH domainENTH domainMembrane recruitmentFYVE domainBind phosphoinositidesTargeting domainsCellular phosphoinositidesCellular signalingCytoskeletal remodelingLipid bindingIntracellular traffickingStructural basisDistinct functionsExquisite specificityRecognition domainPhosphoinositideSpecificity characteristicsBilayer curvatureSignificant insightsHigh affinityDomainHomologyGenome-wide analysis of signaling domain function
Yu JW, Lemmon MA. Genome-wide analysis of signaling domain function. Current Opinion In Chemical Biology 2003, 7: 103-109. PMID: 12547434, DOI: 10.1016/s1367-5931(02)00008-x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceComputational BiologyGenomeProtein BindingProtein Structure, TertiaryProteinsSignal Transduction
2000
Structural Basis for Discrimination of 3-Phosphoinositides by Pleckstrin Homology Domains
Ferguson K, Kavran J, Sankaran V, Fournier E, Isakoff S, Skolnik E, Lemmon M. Structural Basis for Discrimination of 3-Phosphoinositides by Pleckstrin Homology Domains. Molecular Cell 2000, 6: 373-384. PMID: 10983984, DOI: 10.1016/s1097-2765(00)00037-x.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid SequenceBinding SitesBlood ProteinsCrystallography, X-RayFatty AcidsHydrogen BondingInositol PhosphatesLipoproteinsModels, MolecularMolecular Sequence DataPhosphatidylinositol 3-KinasesPhosphatidylinositolsProtein Structure, SecondarySequence AlignmentSequence Homology, Amino AcidSignal TransductionSrc Homology DomainsSubstrate SpecificityConceptsPleckstrin homology domainPH domainHomology domainDifferent PH domainsPhosphoinositide specificityMembrane recruitmentProtein modulesCellular signalingStructural basisHost proteinsSecond messengerMajor PIAmino acidsX-ray crystal structureProteinDomainPhosphoinositideHead groupsSignalingMessengerBindsCrystal structureRecruitment
1997
Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation
Burke C, Lemmon M, Coren B, Engelman D, Stern D. Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation. Oncogene 1997, 14: 687-696. PMID: 9038376, DOI: 10.1038/sj.onc.1200873.Peer-Reviewed Original ResearchConceptsReceptor tyrosine kinasesTransmembrane domainEpidermal growth factor receptorSignal transductionWild-type domainSecond-site mutationsPosition 664Dimerization domainGrowth factor receptorTyrosine kinaseGlycophorin AFactor receptorValine substitutionDimerizationMutationsTransductionGlutamic acidDomainWeak dimerizationMutantsKinaseSignalingProteinEGFChimeras
1996
PH Domains: Diverse Sequences with a Common Fold Recruit Signaling Molecules to the Cell Surface
Lemmon M, Ferguson K, Schlessinger J. PH Domains: Diverse Sequences with a Common Fold Recruit Signaling Molecules to the Cell Surface. Cell 1996, 85: 621-624. PMID: 8646770, DOI: 10.1016/s0092-8674(00)81022-3.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
1994
Regulation of signal transduction and signal diversity by receptor oligomerization
Lemmon M, Schlessinger J. Regulation of signal transduction and signal diversity by receptor oligomerization. Trends In Biochemical Sciences 1994, 19: 459-463. PMID: 7855887, DOI: 10.1016/0968-0004(94)90130-9.Peer-Reviewed Original ResearchConceptsReceptor oligomerizationProtein tyrosine kinase activityTyrosine kinase activityDiversity of ligandsGrowth factorCytoplasmic domainSignal transductionEpidermal growth factorKinase activityExtracellular domainDifferent complementsSame receptor familySignal diversityReceptor familyIndividual receptorsOligomerizationHeterodimerizationDiversityAccessory moleculesReceptorsImportant roleSH2TransmembraneTransductionDomain