2023
Glycoproteomic landscape and structural dynamics of TIM family immune checkpoints enabled by mucinase SmE
Chongsaritsinsuk J, Steigmeyer A, Mahoney K, Rosenfeld M, Lucas T, Smith C, Li A, Ince D, Kearns F, Battison A, Hollenhorst M, Judy Shon D, Tiemeyer K, Attah V, Kwon C, Bertozzi C, Ferracane M, Lemmon M, Amaro R, Malaker S. Glycoproteomic landscape and structural dynamics of TIM family immune checkpoints enabled by mucinase SmE. Nature Communications 2023, 14: 6169. PMID: 37794035, PMCID: PMC10550946, DOI: 10.1038/s41467-023-41756-y.Peer-Reviewed Original ResearchConceptsFamily of proteinsMucin domainO-glycosylationBiological functionsKey regulatorComplex glycansMass spectrometric analysisFunctional relevanceTIM familyDetailed molecular structureCritical roleGlycosylationProteinSpectrometric analysisStructural featuresUnique abilityStructural dynamicsMolecular dynamics simulationsTim-3 functionFamilyPowerful workflowRegulatorImmune cellsCheckpointGlycans
2022
Looking lively: emerging principles of pseudokinase signaling
Sheetz JB, Lemmon MA. Looking lively: emerging principles of pseudokinase signaling. Trends In Biochemical Sciences 2022, 47: 875-891. PMID: 35585008, PMCID: PMC9464697, DOI: 10.1016/j.tibs.2022.04.011.Peer-Reviewed Original Research
2019
Computational algorithms for in silico profiling of activating mutations in cancer
Jordan EJ, Patil K, Suresh K, Park JH, Mosse YP, Lemmon MA, Radhakrishnan R. Computational algorithms for in silico profiling of activating mutations in cancer. Cellular And Molecular Life Sciences 2019, 76: 2663-2679. PMID: 30982079, PMCID: PMC6589134, DOI: 10.1007/s00018-019-03097-2.Peer-Reviewed Original ResearchConceptsTarget proteinsSingle nucleotide polymorphismsB-RafSerine/threonine-protein kinase B-RafDifferent target proteinsEffects of mutationsStructure-based computational approachKinase domainStructure-based methodsStructure-based modelProtein structureProtein activationSilico profilingAnaplastic lymphoma kinaseInteraction of inhibitorsMutational landscapeHuman cancersPoint mutationsProteinMutationsMutational patternsDifferent mutationsActivation statusComputational approachLymphoma kinase
2010
Chapter 136 Pleckstrin Homology (PH) Domains
Lemmon M. Chapter 136 Pleckstrin Homology (PH) Domains. 2010, 1093-1101. DOI: 10.1016/b978-0-12-374145-5.00136-4.Peer-Reviewed Original ResearchPleckstrin homology domainPH domainHomology domainPH domain-containing proteinsDifferent PH domainsDomain-containing proteinsReceptor-mediated endocytosisParticular phosphoinositidesMembrane traffickingMembrane associationProtein functionSequence similarityCommon foldCellular signalingCytoskeletal organizationFunctional relatednessProtein targetsPhosphoinositidePhysiological rolePhysiological relevancePromiscuous bindingX-ray crystallographyPhospholipid modificationStructural similarityProtein
2009
Role of Inn1 and its interactions with Hof1 and Cyk3 in promoting cleavage furrow and septum formation in S. cerevisiae
Nishihama R, Schreiter JH, Onishi M, Vallen EA, Hanna J, Moravcevic K, Lippincott MF, Han H, Lemmon MA, Pringle JR, Bi E. Role of Inn1 and its interactions with Hof1 and Cyk3 in promoting cleavage furrow and septum formation in S. cerevisiae. Journal Of Cell Biology 2009, 185: 995-1012. PMID: 19528296, PMCID: PMC2711614, DOI: 10.1083/jcb.200903125.Peer-Reviewed Original ResearchConceptsCleavage furrowChitin synthase Chs2C-terminal regionActomyosin ring contractionCytokinesis proteinsDivision siteMitotic exitPXXP motifSH3 domainSeptum formationC2 domainS. cerevisiaePlasma membraneBind phospholipidsAMR contractionN-terminusCyk3Inn1Extracellular matrixChs2ProteinImportant interactionsHof1MembraneCytokinesisCharacterization of Novel PtdIns(4,5)P2 Effector Domains
Moravcevic K, Lemmon M. Characterization of Novel PtdIns(4,5)P2 Effector Domains. The FASEB Journal 2009, 23: 873.6-873.6. DOI: 10.1096/fasebj.23.1_supplement.873.6.Peer-Reviewed Original ResearchEffector domainPrevious genome-wide studiesPhosphoinositide-binding proteinsKey cellular processesGenome-wide studiesDifferent protein domainsEffector proteinsCellular functionsCellular processesProtein domainsBiochemical approachesS. cerevisiaeBiochemical basisCellular activitiesCandidate novelDirect interactionProteinNew insightsDomainCerevisiaeMajor rolePhosphoinositideBiologyEffectorsDiversity
2008
Structural basis for EGFR ligand sequestration by Argos
Klein DE, Stayrook SE, Shi F, Narayan K, Lemmon MA. Structural basis for EGFR ligand sequestration by Argos. Nature 2008, 453: 1271-1275. PMID: 18500331, PMCID: PMC2526102, DOI: 10.1038/nature06978.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBinding SitesCell LineCrystallography, X-RayDrosophila melanogasterDrosophila ProteinsEpidermal Growth FactorErbB ReceptorsEye ProteinsHumansLigandsMembrane ProteinsModels, MolecularNerve Tissue ProteinsProtein Structure, TertiaryReceptors, Transforming Growth Factor betaSpodopteraConceptsEpidermal growth factor receptorLigand sequestrationEGFR ligand SpitzLigand SpitzMammalian counterpartsGrowth factor receptorStructural basisUrokinase plasminogen activatorStructural homologuesEGFR ligandsFactor receptorAnticancer therapeuticsStructural resemblanceHomologuesPlasminogen activatorReceptorsSequestrationProteinActivatorLigandsSpitzTGFTherapeuticsDomain
2006
Palmitoylation of the EGFR Ligand Spitz by Rasp Increases Spitz Activity by Restricting Its Diffusion
Miura GI, Buglino J, Alvarado D, Lemmon MA, Resh MD, Treisman JE. Palmitoylation of the EGFR Ligand Spitz by Rasp Increases Spitz Activity by Restricting Its Diffusion. Developmental Cell 2006, 10: 167-176. PMID: 16459296, DOI: 10.1016/j.devcel.2005.11.017.Peer-Reviewed Original ResearchMeSH KeywordsAcyltransferasesAnimalsBase SequenceBiological Transport, ActiveCell LineCell MembraneCysteineDNADrosophilaDrosophila ProteinsEpidermal Growth FactorErbB ReceptorsFemaleGenes, InsectIn Vitro TechniquesLigandsMaleMembrane ProteinsModels, BiologicalMutagenesis, Site-DirectedMutationOvaryPalmitic AcidRecombinant ProteinsTransfectionWings, AnimalConceptsEpidermal growth factor receptorDrosophila epidermal growth factor receptorEGFR ligand SpitzPlasma membrane associationN-terminal cysteine residueLigand SpitzMembrane associationWnt familyDevelopmental functionsGrowth factor receptorCysteine residuesBiological functionsLipid modificationPalmitoylationIntracellular proteinsCultured cellsCell membraneFactor receptorSpitzReduced activityVivoTransmembraneHedgehogProteinActivity
2004
Inhibition of nuclear import and cell-cycle progression by mutated forms of the dynamin-like GTPase MxB
King MC, Raposo G, Lemmon MA. Inhibition of nuclear import and cell-cycle progression by mutated forms of the dynamin-like GTPase MxB. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 8957-8962. PMID: 15184662, PMCID: PMC428454, DOI: 10.1073/pnas.0403167101.Peer-Reviewed Original ResearchMeSH KeywordsActive Transport, Cell NucleusAmino Acid SubstitutionCell CycleCell NucleusCytoplasmGene ExpressionGTP-Binding ProteinsGuanosine TriphosphateHeLa CellsHumansInterferon-alphaMicroscopy, FluorescenceMicroscopy, ImmunoelectronMyxovirus Resistance ProteinsNuclear PoreNuclear Pore Complex ProteinsRecombinant Fusion ProteinsRNA InterferenceTransfectionConceptsNuclear importCell cycle progressionRNA interferenceDynamin-like proteinCell cycle defectsDynamin-like GTPasesNormal cellular functionNucleocytoplasmic traffickingCellular functionsNuclear poresCytoplasmic faceMx proteinCellular traffickingUnexpected roleMxBType I IFNTraffickingProteinI IFNImportAntiviral activityGTPasesMutantsSubfamiliesRoleSvp1p defines a family of phosphatidylinositol 3,5‐bisphosphate effectors
Dove SK, Piper RC, McEwen RK, Yu JW, King MC, Hughes DC, Thuring J, Holmes AB, Cooke FT, Michell RH, Parker PJ, Lemmon MA. Svp1p defines a family of phosphatidylinositol 3,5‐bisphosphate effectors. The EMBO Journal 2004, 23: 1922-1933. PMID: 15103325, PMCID: PMC404323, DOI: 10.1038/sj.emboj.7600203.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAutophagy-Related ProteinsBase SequenceCloning, MolecularEndosomesEscherichia coliGene ComponentsGenetic VectorsGreen Fluorescent ProteinsMembrane ProteinsMolecular Sequence DataPhosphatidylinositol PhosphatesPhosphotransferases (Alcohol Group Acceptor)PlasmidsProtein BindingProtein FoldingProtein TransportRhinovirusSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence AlignmentSequence Analysis, DNAVacuolesConceptsFamily of phosphatidylinositolSaccharomyces cerevisiae mutantsDrosophila homologueCerevisiae mutantsMembrane recyclingVesicle recyclingVacuole enlargementVacuole membraneMultivesicular bodiesRelated proteinsLysosomal compartmentMarker proteinsExquisite specificityEffectorsProteinPhosphatidylinositolVacuolesEukaryotesCellsMutantsLocalisesGolgiHomologuesMVBGenesGenome-Wide Analysis of Membrane Targeting by S. cerevisiae Pleckstrin Homology Domains
Yu JW, Mendrola JM, Audhya A, Singh S, Keleti D, DeWald DB, Murray D, Emr SD, Lemmon MA. Genome-Wide Analysis of Membrane Targeting by S. cerevisiae Pleckstrin Homology Domains. Molecular Cell 2004, 13: 677-688. PMID: 15023338, DOI: 10.1016/s1097-2765(04)00083-8.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesBlood ProteinsCalcium-Binding ProteinsCell MembraneCytoskeletal ProteinsGene Expression Regulation, FungalGenome, FungalPhosphatidylinositolsPhosphoproteinsProtein BindingProtein Structure, TertiarySaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence Homology, Amino AcidConceptsPH domain bindsMembrane targetingPH domainDomain bindsPhosphoinositide-dependent mannerS. cerevisiae genomeSmall protein modulesPleckstrin homology domainProteome-wide analysisFunction of proteinsMembrane recruitmentCerevisiae genomePhosphoinositide bindingPleckstrin homologyHomology domainProtein modulesWide analysisSubcellular localizationHost proteinsBindsLittle specificityPhosphoinositideProteinHigh affinityCommon domain
2003
Molecular Determinants of tGolgin-1 Function
Yoshino A, Marks M, Lemmon M. Molecular Determinants of tGolgin-1 Function. 2003 DOI: 10.21236/ada418143.Peer-Reviewed Original ResearchTrans-Golgi networkGRIP domainMammalian cellsC-terminal GRIP domainDynein/dynactin complexGRIP domain proteinsPeripheral membrane proteinsGTPase cascadeDomain proteinsDynactin complexGolgi networkMembrane proteinsCell motilityTurn bindsGolgi complexProtein resultsMolecular determinantsProteinTumor developmentOrthologuesCellsDomainRNAiEndosomesYeastGenome-wide analysis of signaling domain function
Yu JW, Lemmon MA. Genome-wide analysis of signaling domain function. Current Opinion In Chemical Biology 2003, 7: 103-109. PMID: 12547434, DOI: 10.1016/s1367-5931(02)00008-x.Peer-Reviewed Original ResearchChapter 150 Pleckstrin Homology (PH) Domains
Lemmon M. Chapter 150 Pleckstrin Homology (PH) Domains. 2003, 161-169. DOI: 10.1016/b978-012124546-7/50511-8.Peer-Reviewed Original ResearchPleckstrin homology domainPH domainHomology domainSequence similarityPH domain-containing proteinsDomain-containing proteinsHuman genome sequenceMembrane traffickingConserved motifsMembrane associationCommon foldCellular signalingGenome sequenceCytoskeletal organizationDomain familySequence identityFunctional relatednessProtein ligandsHigh affinityProteinPhospholipid modificationStructural similarityPhosphoinositideSequenceDomain
2002
Molecular Determinants of tGolgin-1 Function
Yoshino A, Marks M, Lemmon M. Molecular Determinants of tGolgin-1 Function. 2002 DOI: 10.21236/ada408101.Peer-Reviewed Original ResearchTrans-Golgi networkGRIP domainC-terminal GRIP domainGRIP domain proteinsPeripheral membrane proteinsN-terminal domainDomain proteinsGolgi networkTGN structureMammalian cellsGolgin-97Membrane proteinsCell motilityMolecular basisGolgi complexMolecular determinantsBroader roleCoil regionProteinTumor metastasisProtein contentCellsDomainRNAiMicrotubules
2000
Structural Basis for Discrimination of 3-Phosphoinositides by Pleckstrin Homology Domains
Ferguson K, Kavran J, Sankaran V, Fournier E, Isakoff S, Skolnik E, Lemmon M. Structural Basis for Discrimination of 3-Phosphoinositides by Pleckstrin Homology Domains. Molecular Cell 2000, 6: 373-384. PMID: 10983984, DOI: 10.1016/s1097-2765(00)00037-x.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid SequenceBinding SitesBlood ProteinsCrystallography, X-RayFatty AcidsHydrogen BondingInositol PhosphatesLipoproteinsModels, MolecularMolecular Sequence DataPhosphatidylinositol 3-KinasesPhosphatidylinositolsProtein Structure, SecondarySequence AlignmentSequence Homology, Amino AcidSignal TransductionSrc Homology DomainsSubstrate SpecificityConceptsPleckstrin homology domainPH domainHomology domainDifferent PH domainsPhosphoinositide specificityMembrane recruitmentProtein modulesCellular signalingStructural basisHost proteinsSecond messengerMajor PIAmino acidsX-ray crystal structureProteinDomainPhosphoinositideHead groupsSignalingMessengerBindsCrystal structureRecruitment
1998
Identification and analysis of PH domain‐containing targets of phosphatidylinositol 3‐kinase using a novel in vivo assay in yeast
Isakoff S, Cardozo T, Andreev J, Li Z, Ferguson K, Abagyan R, Lemmon M, Aronheim A, Skolnik E. Identification and analysis of PH domain‐containing targets of phosphatidylinositol 3‐kinase using a novel in vivo assay in yeast. The EMBO Journal 1998, 17: 5374-5387. PMID: 9736615, PMCID: PMC1170863, DOI: 10.1093/emboj/17.18.5374.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBlood ProteinsCell MembraneConsensus SequenceConserved SequenceFungal ProteinsModels, MolecularMutationPhosphatidylinositol 3-KinasesPhosphatidylinositol PhosphatesPhosphoproteinsProtein BindingRas ProteinsRecombinant Fusion ProteinsSaccharomyces cerevisiaeSecond Messenger SystemsSequence Homology, Amino AcidConceptsPI3K productsPH domainNon-permissive temperaturePH domain-containing proteinsRas exchange factorK productDomain-containing proteinsPleckstrin homology domainExchange factorHomology domainYeast SaccharomycesNovel cDNAConsensus sequenceFusion proteinSecond messengerCellular responsesPI3KAmino acidsHigh affinityYeastYeast growthProteinPhosphatidylinositolNovel assayPowerful approach
1997
Regulatory recruitment of signalling molecules to the cell membrane by pleckstrinhomology domains
M.A. L, M. F, J. S, K. F. Regulatory recruitment of signalling molecules to the cell membrane by pleckstrinhomology domains. Trends In Cell Biology 1997, 7: 237-242. PMID: 17708952, DOI: 10.1016/s0962-8924(97)01065-9.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsCell membraneSmall protein modulesPleckstrin homology domainPH domainProtein modulesBiological functionsDiverse processesCertain proteinsSpecific membraneProtein synthesisCell adhesionDNA synthesisProteinMembraneRecent studiesRecruitmentDomainPhosphoinositideEfficient mechanismRegulationPathwayCellsFunctionAdhesionDimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation
Burke C, Lemmon M, Coren B, Engelman D, Stern D. Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation. Oncogene 1997, 14: 687-696. PMID: 9038376, DOI: 10.1038/sj.onc.1200873.Peer-Reviewed Original ResearchConceptsReceptor tyrosine kinasesTransmembrane domainEpidermal growth factor receptorSignal transductionWild-type domainSecond-site mutationsPosition 664Dimerization domainGrowth factor receptorTyrosine kinaseGlycophorin AFactor receptorValine substitutionDimerizationMutationsTransductionGlutamic acidDomainWeak dimerizationMutantsKinaseSignalingProteinEGFChimeras
1996
Ala‐insertion scanning mutagenesis of the glycophorin a transmembrane helix: A rapid way to map helix‐helix interactions in integral membrane proteins
Mingarro I, Whitley P, Von Heijne G, Lemmon M. Ala‐insertion scanning mutagenesis of the glycophorin a transmembrane helix: A rapid way to map helix‐helix interactions in integral membrane proteins. Protein Science 1996, 5: 1339-1341. PMID: 8819166, PMCID: PMC2143459, DOI: 10.1002/pro.5560050712.Peer-Reviewed Original Research