2023
Single Cell Genomic Analysis Reveals Cell Type-Specific Molecular Signatures in the Human PTSD Prefrontal Cortex
Girgenti M, Zhang J, Skarica M, Hwang A, Xu K, Young K, Zhao H, Sestan N, Krystal J. Single Cell Genomic Analysis Reveals Cell Type-Specific Molecular Signatures in the Human PTSD Prefrontal Cortex. Biological Psychiatry 2023, 93: s11-s12. DOI: 10.1016/j.biopsych.2023.02.049.Peer-Reviewed Original Research
2022
AgRP neurons control structure and function of the medial prefrontal cortex
Stutz B, Waterson MJ, Šestan-Peša M, Dietrich MO, Škarica M, Sestan N, Racz B, Magyar A, Sotonyi P, Liu ZW, Gao XB, Matyas F, Stoiljkovic M, Horvath TL. AgRP neurons control structure and function of the medial prefrontal cortex. Molecular Psychiatry 2022, 27: 3951-3960. PMID: 35906488, PMCID: PMC9891653, DOI: 10.1038/s41380-022-01691-8.Peer-Reviewed Original ResearchConceptsMedial prefrontal cortexAgRP neuronsNon-selective dopamine receptor antagonistBrain functionPrefrontal cortexHypothalamic AgRP neuronsMedial thalamic neuronsAdministration of clozapineDopamine receptor antagonistVentral tegmental areaOscillatory network activityHigher-order brain functionsHypothalamic agoutiThalamic neuronsChemogenetic inhibitionDopaminergic neuronsReceptor antagonistTegmental areaNeuronal pathwaysSensorimotor gatingAdult miceModulatory impactAmbulatory behaviorConstitutive impairmentNeurons
2021
Integrative Functional Genomic Analysis of Human PTSD Molecular Pathology and Risk
Girgenti M, Skarica M, Zhang J, Wang J, Friedman M, Zhao H, Krystal J. Integrative Functional Genomic Analysis of Human PTSD Molecular Pathology and Risk. Biological Psychiatry 2021, 89: s12. DOI: 10.1016/j.biopsych.2021.02.050.Peer-Reviewed Original Research
2018
Revealing the brain's molecular architecture
Ashley-Koch A, Crawford G, Garrett M, Song L, Safi A, Johnson G, Wray G, Reddy T, Goes F, Zandi P, Bryois J, Jaffe A, Price A, Ivanov N, Collado-Torres L, Hyde T, Burke E, Kleiman J, Tao R, Shin J, Akbarian S, Girdhar K, Jiang Y, Kundakovic M, Brown L, Kassim B, Park R, Wiseman J, Zharovsky E, Jacobov R, Devillers O, Flatow E, Hoffman G, Lipska B, Lewis D, Haroutunian V, Hahn C, Charney A, Dracheva S, Kozlenkov A, Belmont J, DelValle D, Francoeur N, Hadjimichael E, Pinto D, van Bakel H, Roussos P, Fullard J, Bendl J, Hauberg M, Mangravite L, Peters M, Chae Y, Peng J, Niu M, Wang X, Webster M, Beach T, Chen C, Jiang Y, Dai R, Shieh A, Liu C, Grennan K, Xia Y, Vadukapuram R, Wang Y, Fitzgerald D, Cheng L, Brown M, Brown M, Brunetti T, Goodman T, Alsayed M, Gandal M, Geschwind D, Won H, Polioudakis D, Wamsley B, Yin J, Hadzic T, De La Torre Ubieta L, Swarup V, Sanders S, State M, Werling D, An J, Sheppard B, Willsey A, White K, Ray M, Giase G, Kefi A, Mattei E, Purcaro M, Weng Z, Moore J, Pratt H, Huey J, Borrman T, Sullivan P, Giusti-Rodriguez P, Kim Y, Sullivan P, Szatkiewicz J, Rhie S, Armoskus C, Camarena A, Farnham P, Spitsyna V, Witt H, Schreiner S, Evgrafov O, Knowles J, Gerstein M, Liu S, Wang D, Navarro F, Warrell J, Clarke D, Emani P, Gu M, Shi X, Xu M, Yang Y, Kitchen R, Gürsoy G, Zhang J, Carlyle B, Nairn A, Li M, Pochareddy S, Sestan N, Skarica M, Li Z, Sousa A, Santpere G, Choi J, Zhu Y, Gao T, Miller D, Cherskov A, Yang M, Amiri A, Coppola G, Mariani J, Scuderi S, Szekely A, Vaccarino F, Wu F, Weissman S, Roychowdhury T, Abyzov A. Revealing the brain's molecular architecture. Science 2018, 362: 1262-1263. PMID: 30545881, DOI: 10.1126/science.362.6420.1262.Peer-Reviewed Original Research
2017
Expression and immunolocalization of metallothioneins MT1, MT2 and MT3 in rat nephron
Sabolić I, Škarica M, Ljubojević M, Breljak D, Herak-Kramberger C, Crljen V, Ljubešić N. Expression and immunolocalization of metallothioneins MT1, MT2 and MT3 in rat nephron. Journal Of Trace Elements In Medicine And Biology 2017, 46: 62-75. PMID: 29413112, DOI: 10.1016/j.jtemb.2017.11.011.Peer-Reviewed Original ResearchIntersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network
McConnell MJ, Moran JV, Abyzov A, Akbarian S, Bae T, Cortes-Ciriano I, Erwin JA, Fasching L, Flasch DA, Freed D, Ganz J, Jaffe AE, Kwan KY, Kwon M, Lodato MA, Mills RE, Paquola ACM, Rodin RE, Rosenbluh C, Sestan N, Sherman MA, Shin JH, Song S, Straub RE, Thorpe J, Weinberger DR, Urban AE, Zhou B, Gage FH, Lehner T, Senthil G, Walsh CA, Chess A, Courchesne E, Gleeson JG, Kidd JM, Park PJ, Pevsner J, Vaccarino FM, Barton A, Bekiranov S, Bohrson C, Burbulis I, Chronister W, Coppola G, Daily K, D’Gama A, Emery S, Frisbie T, Gao T, Gulyás-Kovács A, Haakenson M, Keil J, Kopera H, Lam M, Lee E, Marques-Bonet T, Mathern G, Moldovan J, Oetjens M, Omberg L, Peters M, Pochareddy S, Pramparo T, Ratan A, Sanavia T, Shi L, Skarica M, Wang J, Wang M, Wang Y, Wierman M, Wolpert M, Woodworth M, Zhao X, Zhou W. Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science 2017, 356 PMID: 28450582, PMCID: PMC5558435, DOI: 10.1126/science.aal1641.Peer-Reviewed Original ResearchConceptsSomatic mutationsComplex genetic architectureStructural genomic variantsNeuronal genomeNeuronal transcriptomeGenetic architectureCell divisionCellular metabolismGenomic variantsLong life spanDNA damageComplex neuropsychiatric disorderCellular expansionNeuropsychiatric diseasesNeuropsychiatric disordersProgenitor cellsSomatic mosaicismIndividual neurodevelopmentSmall populationCell proliferationPopulation-based studyMutationsGermline variantsLife spanBrain development
2013
Immunoregulatory Neuropeptides
Ganea D, Skarica M. Immunoregulatory Neuropeptides. 2013, 144-160. DOI: 10.1002/9781118314814.ch7.Peer-Reviewed Original ResearchVasoactive intestinal peptideCentral nervous systemAnti-inflammatory neuropeptidesImmunoregulatory neuropeptideParasympathetic innervationAutoimmune diseasesImmunomodulatory roleIntestinal peptideImmune cellsLymphoid organsAdaptive immunityVivo effectsNervous systemImmune systemImmune sourcesClinical useNeuropeptidesMajor signaling pathwaysSignaling pathwaysPeptide familyReceptorsPleiotropic effectsInnervationChemokinesCytokines
2011
Modulation of Inflammatory Responses by a Cannabinoid-2–Selective Agonist after Spinal Cord Injury
Adhikary S, Li H, Heller J, Skarica M, Zhang M, Ganea D, Tuma R. Modulation of Inflammatory Responses by a Cannabinoid-2–Selective Agonist after Spinal Cord Injury. Journal Of Neurotrauma 2011, 28: 2417-2427. PMID: 21970496, PMCID: PMC3235339, DOI: 10.1089/neu.2011.1853.Peer-Reviewed Original ResearchConceptsSpinal cord injuryInflammatory responseSpinal cordSelective CB2 agonistAutonomic functionCord injuryMotor functionCB2 agonistsToll-like receptor expressionChemokine/cytokine expressionIL-23p19 expressionCell invasionInflammatory cell invasionSignificant reductionContusion injuryPercentage of animalsCXCL-9Immunoreactive microgliaCXCL-11Cytokine expressionIL-23RReceptor expressionInflammatory reactionInjuryEntire study periodNovel mechanisms of immune modulation of natalizumab in multiple sclerosis patients
Skarica M, Eckstein C, Whartenby K, Calabresi P. Novel mechanisms of immune modulation of natalizumab in multiple sclerosis patients. Journal Of Neuroimmunology 2011, 235: 70-76. PMID: 21550672, DOI: 10.1016/j.jneuroim.2011.02.010.Peer-Reviewed Original ResearchConceptsNatalizumab therapyPeripheral bloodMonth timepointProportion of CD20Proportion of CD4Number of CD14Multiple sclerosis patientsImmune cell compositionHematopoetic stem cellsPercentage of cellsMechanism of actionNatalizumab treatmentRRMS patientsMS patientsNK cellsSclerosis patientsTreatment onsetCytokine productionImmune compositionImmune modulationImmune cellsT cellsB cellsPatientsTherapy
2010
Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs
Sabolić I, Breljak D, Škarica M, Herak-Kramberger C. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. BioMetals 2010, 23: 897-926. PMID: 20549307, DOI: 10.1007/s10534-010-9351-z.Peer-Reviewed Original ResearchConceptsProximal tubule cellsChronic toxicityTubular injuryRole of metallothioneinMT-1Intracellular MTSquamous epitheliumCytotoxicity of CdChronic intoxicationTubule cellsVariety of stimuliRole of MTKidneyMajor physiological functionsMT-2Oxidative stressAdult mammalsMT-4Acute toxicityMajor targetMT-3Essential metals ZnMost tissuesToxicityDe novo synthesisAnti-inflammatory property of the cannabinoid receptor-2-selective agonist in spinal cord injury (35.11)
Adhikary S, Hongbo L, Skarica M, Tuma R, Ganea D. Anti-inflammatory property of the cannabinoid receptor-2-selective agonist in spinal cord injury (35.11). The Journal Of Immunology 2010, 184: 35.11-35.11. DOI: 10.4049/jimmunol.184.supp.35.11.Peer-Reviewed Original ResearchAcute spinal cord injurySpinal cord injuryAgonist treatmentImmune cellsCannabinoid receptor-2 selective agonistCord injurySpinal cordAnimal models of CNS disordersContusion model of spinal cord injuryInfiltration of immune cellsModels of CNS disordersT-cell-activating cytokinesTreat neuropathic painExpression of inflammatory moleculesModel of spinal cord injuryModel of acute spinal cord injuryInflammatory immune cellsToll-like receptorsO-1966Neuropathic painCannabinoid receptorsBladder functionRecovery of motorIL-23Anti-inflammatory propertiesDendritic Cells Transduced With Lentiviral Vectors Expressing VIP Differentiate Into VIP-secreting Tolerogenic-like DCs
Toscano M, Delgado M, Kong W, Martin F, Skarica M, Ganea D. Dendritic Cells Transduced With Lentiviral Vectors Expressing VIP Differentiate Into VIP-secreting Tolerogenic-like DCs. Molecular Therapy 2010, 18: 1035-1045. PMID: 20068554, PMCID: PMC2890107, DOI: 10.1038/mt.2009.293.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Marrow CellsCell DifferentiationCell MovementCells, CulturedDendritic CellsEnzyme-Linked Immunosorbent AssayFlow CytometryGenetic VectorsLentivirusMiceMice, Inbred BALB CPolymerase Chain ReactionReverse Transcriptase Polymerase Chain ReactionTransduction, GeneticVasoactive Intestinal PeptideConceptsVasoactive intestinal peptideExperimental autoimmune encephalomyelitisDendritic cellsTherapeutic effectTolerogenic DCsVIP administrationInflammatory disordersT cellsImmune responseBone marrow-derived dendritic cellsBone marrow-derived DCsMarrow-derived dendritic cellsNeuropeptide vasoactive intestinal peptideTolerogenic dendritic cellsAllogeneic T cellsAutoimmune/inflammatory disordersRegulatory T cellsIL-10 productionProinflammatory cytokine secretionPromising therapeutic toolLentiviral vectorsHigh-dose inoculationCLP miceAutoimmune encephalomyelitisPuncture (CLP) sepsis
2009
Cyclophosphamide resets dendritic cell homeostasis and enhances antitumor immunity through effects that extend beyond regulatory T cell elimination
Radojcic V, Bezak K, Skarica M, Pletneva M, Yoshimura K, Schulick R, Luznik L. Cyclophosphamide resets dendritic cell homeostasis and enhances antitumor immunity through effects that extend beyond regulatory T cell elimination. Cancer Immunology, Immunotherapy 2009, 59: 137-148. PMID: 19590872, PMCID: PMC3103867, DOI: 10.1007/s00262-009-0734-3.Peer-Reviewed Original ResearchConceptsDendritic cell homeostasisAntitumor immunityT cellsLow-dose total body irradiationTumor antigen-specific T cellsAnti-CD25 monoclonal antibodyHematopoietic stem cell supportAntigen-specific T cellsUntreated tumor-bearing animalsTumor-infiltrating DCsExpansion of TregsRegulatory T cellsStem cell supportTotal body irradiationT cell responsesLess IL-10More IL-12Tumor-bearing animalsT cell eliminationCell homeostasisDC turnoverTreg depletionImmunotherapeutic strategiesIL-10Body irradiationSignal Transduction Inhibition of APCs Diminishes Th17 and Th1 Responses in Experimental Autoimmune Encephalomyelitis
Skarica M, Wang T, McCadden E, Kardian D, Calabresi P, Small D, Whartenby K. Signal Transduction Inhibition of APCs Diminishes Th17 and Th1 Responses in Experimental Autoimmune Encephalomyelitis. The Journal Of Immunology 2009, 182: 4192-4199. PMID: 19299717, PMCID: PMC3727416, DOI: 10.4049/jimmunol.0803631.Peer-Reviewed Original ResearchConceptsExperimental autoimmune encephalomyelitisPeripheral dendritic cellsDendritic cellsT cellsSignal transduction inhibitorsAutoimmune encephalomyelitisMultiple sclerosisIFN-gamma-secreting T cellsBone marrow chimera systemAg-specific T cellsTransduction inhibitorsT cell responsesT cell subsetsSignal transduction inhibitionCNS infiltrationCytokine polarizationIL-17IL-23Th1 responseAutoimmune responseCell subsetsCostimulatory moleculesIL-6TNF-alphaCEP-701
2007
320: In vivo activation of APCs with TLR ligands and tissue damage rather than amount of host APCs are critical factors that determine DLI-mediated GVL reactivity and GVHD in MHC-matched minor histocompatibility antigen (mHAg)-mismatched chimeras
Radojcic V, Skarica M, Murphy G, Luznik L. 320: In vivo activation of APCs with TLR ligands and tissue damage rather than amount of host APCs are critical factors that determine DLI-mediated GVL reactivity and GVHD in MHC-matched minor histocompatibility antigen (mHAg)-mismatched chimeras. Transplantation And Cellular Therapy 2007, 13: 116-117. DOI: 10.1016/j.bbmt.2006.12.325.Peer-Reviewed Original ResearchFactors governing the activation of adoptively transferred donor T cells infused after allogeneic bone marrow transplantation in the mouse
Durakovic N, Radojcic V, Skarica M, Bezak K, Powell J, Fuchs E, Luznik L. Factors governing the activation of adoptively transferred donor T cells infused after allogeneic bone marrow transplantation in the mouse. Blood 2007, 109: 4564-4574. PMID: 17227829, PMCID: PMC1885486, DOI: 10.1182/blood-2006-09-048124.Peer-Reviewed Original ResearchConceptsDonor lymphocyte infusionDonor T cellsHost T cellsBone marrow transplantationT cellsHost chimerismHost APCsMarrow transplantationPrevious sensitizationAllogeneic bone marrow transplantationToll-like receptor ligandsGvH responseGVL reactivityLeukemia reactivityLymphocyte infusionMixed chimerismTLR ligandsHost antigensMurine modelVivo administrationCell activatorsHigh levelsAlloreactivityChimerismMHC
2006
Host-Derived Langerhans Cells Persist after MHC-Matched Allografting Independent of Donor T Cells and Critically Influence the Alloresponses Mediated by Donor Lymphocyte Infusions
Durakovic N, Bezak K, Skarica M, Radojcic V, Fuchs E, Murphy G, Luznik L. Host-Derived Langerhans Cells Persist after MHC-Matched Allografting Independent of Donor T Cells and Critically Influence the Alloresponses Mediated by Donor Lymphocyte Infusions. The Journal Of Immunology 2006, 177: 4414-4425. PMID: 16982876, DOI: 10.4049/jimmunol.177.7.4414.Peer-Reviewed Original ResearchConceptsCutaneous lymph nodesDonor lymphocyte infusionDonor T cellsBone marrow transplantationLangerhans cellsLymphocyte infusionMarrow transplantationCell reconstitutionT cellsDendritic cell reconstitutionDonor-derived DCsHost Langerhans cellsSplenic DC subsetsTLR7 ligand imiquimodMinor histocompatibility AgT-cell reconstitutionDLI administrationHost alloresponsesHost DCsLC emigrationDC subsetsLymph nodesCostimulatory moleculesHistocompatibility AgCells persistHost Langerhans cells (LCs) can be therapeutically manipulated In vivo with imiquimod (TLR7 agonist) to augment DLI-mediated GVH and GVL reactivity
Skarica M, Radojcic V, Luznik L. Host Langerhans cells (LCs) can be therapeutically manipulated In vivo with imiquimod (TLR7 agonist) to augment DLI-mediated GVH and GVL reactivity. Transplantation And Cellular Therapy 2006, 12: 52. DOI: 10.1016/j.bbmt.2005.11.164.Peer-Reviewed Original ResearchInterferon-producing killer dendritic cells provide a link between innate and adaptive immunity
Chan C, Crafton E, Fan H, Flook J, Yoshimura K, Skarica M, Brockstedt D, Dubensky T, Stins M, Lanier L, Pardoll D, Housseau F. Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nature Medicine 2006, 12: 207-213. PMID: 16444266, DOI: 10.1038/nm1352.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAnimalsAntigen PresentationCell Line, TumorCytotoxicity, ImmunologicDendritic CellsGene ExpressionImmunity, InnateIn Vitro TechniquesInterferonsKiller Cells, NaturalListeria monocytogenesMiceMice, Inbred BALB CMice, Inbred C57BLMice, Inbred DBAMice, KnockoutMice, TransgenicOligodeoxyribonucleotidesConceptsInterferon-producing killer dendritic cellsDendritic cellsKiller dendritic cellsI interferonNK cellsAdaptive immunityAntigen-presenting cell activityMajor histocompatibility complex class IISurface major histocompatibility complex class IIHistocompatibility complex class IIClassical NK cellsPlasmacytoid dendritic cellsTarget cellsAntigen-presenting activityConventional dendritic cellsNatural killer cellsNK target cellsToll-like receptorsType I interferonNK functionLymph nodesNKG2D receptorKiller cellsCostimulatory moleculesCytolytic capacity
2005
Rat renal glucose transporter SGLT1 exhibits zonal distribution and androgen-dependent gender differences
Sabolić I, Škarica M, Gorboulev V, Ljubojević M, Balen D, Herak-Kramberger C, Koepsell H. Rat renal glucose transporter SGLT1 exhibits zonal distribution and androgen-dependent gender differences. American Journal Of Physiology. Renal Physiology 2005, 290: f913-f926. PMID: 16204409, DOI: 10.1152/ajprenal.00270.2005.Peer-Reviewed Original ResearchConceptsBrush border membraneProximal tubulesPT segmentsRat SGLT1Gender differencesExpression of SGLT1Androgen inhibitionRenal capsuleSmooth musclePeptide-specific polyclonal antibodiesRat kidneyGlucose transporter SGLT1S3 segmentBlood vesselsPart of glucoseImmunoblotting dataMRNA levelsMammalian proximal tubuleMedullary raysBBM vesiclesTissue cryosectionsTransporter SGLT1KidneySGLT1Immunostaining