2024
PET imaging of M4 muscarinic acetylcholine receptors in rhesus macaques using [11C]MK-6884: Quantification with kinetic modeling and receptor occupancy by CVL-231 (emraclidine), a novel positive allosteric modulator
Belov V, Guehl N, Duvvuri S, Iredale P, Moon S, Dhaynaut M, Chakilam S, MacDonagh A, Rice P, Yokell D, Renger J, Fakhri G, Normandin M. PET imaging of M4 muscarinic acetylcholine receptors in rhesus macaques using [11C]MK-6884: Quantification with kinetic modeling and receptor occupancy by CVL-231 (emraclidine), a novel positive allosteric modulator. Cerebrovascular And Brain Metabolism Reviews 2024, 44: 1329-1342. PMID: 38477292, PMCID: PMC11342722, DOI: 10.1177/0271678x241238820.Peer-Reviewed Original ResearchConceptsPositive allosteric modulatorsReceptor occupancyNon-human primatesBinding potentialPositron emission tomographyMuscarinic acetylcholine receptorsAllosteric modulatorsNon-human primate brainM4 muscarinic acetylcholine receptorStriatal hyperdopaminergiaAcetylcholine receptorsBrain regionsCaudate nucleusTotal volume of distributionDose-dependent blockReference regionVolume of distributionPositron emission tomography imagingEmission tomographyReceptor levelsFunction of dosePET scansClinical trialsBlood-basedRhesus macaques
2020
Joint Direct Parametric Reconstruction for Pet Receptor Occupancy Mapping
Marin T, Ouyang J, Fakhri G, Normandin M, Petibon Y. Joint Direct Parametric Reconstruction for Pet Receptor Occupancy Mapping. 2020, 00: 1-4. DOI: 10.1109/nss/mic42677.2020.9507742.Peer-Reviewed Original ResearchCentral nervous systemPositron emission tomographyVariable splitting techniqueReceptor occupancyBayesian reconstruction frameworkDenoising problemDose-occupancy relationshipReconstruction frameworkCentral nervous system drugsDevelopment of central nervous systemEstimation of receptor occupancyOptimization problemDrug brain penetrationLow precisionMeasure occupancyDrug AdministrationBrain penetrationRadiation exposureSplitting techniqueEmission tomographyDynamic dataTracer bindingNervous systemConventional approachesTarget engagement
2013
Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI
Sander C, Hooker J, Catana C, Normandin M, Alpert N, Knudsen G, Vanduffel W, Rosen B, Mandeville J. Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 11169-11174. PMID: 23723346, PMCID: PMC3703969, DOI: 10.1073/pnas.1220512110.Peer-Reviewed Original ResearchConceptsFunctional magnetic resonance imagingDopamine receptor occupancyReceptor occupancyPositron emission tomographyFunctional magnetic resonance imaging measuresDose of racloprideBasal dopamine levelsDopamine-rich striatumInvestigation of neurovascular couplingDomains of spaceAnesthetized nonhuman primatesSimultaneous PET/fMRIDopamine levelsBrain activitySimultaneous neuroimagingBinding potentialBasal gangliaReceptor systemNonhuman primatesPositron emission tomography tracersMagnetic resonance imagingLiterature differencesEmission tomographyMap associationsNeurovascular couplingA receptor-based model for dopamine-induced fMRI signal
Mandeville J, Sander C, Jenkins B, Hooker J, Catana C, Vanduffel W, Alpert N, Rosen B, Normandin M. A receptor-based model for dopamine-induced fMRI signal. NeuroImage 2013, 75: 46-57. PMID: 23466936, PMCID: PMC3683121, DOI: 10.1016/j.neuroimage.2013.02.036.Peer-Reviewed Original ResearchConceptsDopamine releaseFMRI dataNon-human primatesLevels of dopamine releaseD2-like receptor familyElevated synaptic dopamineSynaptic dopamineAmphetamine stimulationDopaminergic stimulationFMRINeuroimaging techniquesDopamine effectsFMRI modelFMRI signalsDopamineReceptor densityReceptor occupancyBasal gangliaLow dosesHigh dosesPre-clinical dataNeuroadaptationsRacloprideAmphetamineFunction excitation