2023
Evolutionarily conserved midbody remodeling precedes ring canal formation during gametogenesis
Price K, Tharakan D, Cooley L. Evolutionarily conserved midbody remodeling precedes ring canal formation during gametogenesis. Developmental Cell 2023, 58: 474-488.e5. PMID: 36898376, PMCID: PMC10059090, DOI: 10.1016/j.devcel.2023.02.008.Peer-Reviewed Original ResearchConceptsCanal formationStable intercellular bridgesGerm cell divisionMidbody ringTime-lapse imagingFemale germlineCell cytokinesisDrosophila malesRing canalsComplete cytokinesisKinase functionCell divisionCytokinesis eventsBroad functionsCytokinesisIntercellular bridgesExtensive remodelingMidbodyDrosophilaBiological systemsDisease statesImportant insightsGametogenesisGermlineProtein
2020
Drosophila sperm development and intercellular cytoplasm sharing through ring canals do not require an intact fusome
Kaufman RS, Price KL, Mannix KM, Ayers KM, Hudson AM, Cooley L. Drosophila sperm development and intercellular cytoplasm sharing through ring canals do not require an intact fusome. Development 2020, 147: dev190140. PMID: 33033119, PMCID: PMC7687857, DOI: 10.1242/dev.190140.Peer-Reviewed Original ResearchConceptsRing canalsSperm developmentPost-meiotic haploid spermatidsGerm cellsGermline ring canalsAnimal germ cellsQuality control surveillanceLarge cytoplasmic structuresCytoplasmic informationDiploid spermatogoniaHaploid spermatidsSpecialized organellesIncomplete cytokinesisIntercellular movementCell divisionEndogenous proteinsFusomeCytoplasmic structuresIntercellular bridgesMale fertilityIntercellular trafficSpermatogenesisCellsCytokinesisNormal conditions
2013
Bridging the divide
McLean PF, Cooley L. Bridging the divide. Fly 2013, 8: 13-18. PMID: 24406334, PMCID: PMC3974888, DOI: 10.4161/fly.27016.Peer-Reviewed Original ResearchConceptsRing canalsMitotic clonesSomatic tissuesDrosophila somatic tissuesFollicle cellsProtein of interestNon-recombined cellsDirect cytoplasmic connectionsDrosophila oogenesisImaginal discsGenetic toolsIntercellular exchangeProtein movementCleavage furrowCytoplasmic connectionsProteinClonesCellsMosaic cellsClonal dataOogenesisGFPTissue
2012
Expression of Ixodes scapularis Antifreeze Glycoprotein Enhances Cold Tolerance in Drosophila melanogaster
Neelakanta G, Hudson AM, Sultana H, Cooley L, Fikrig E. Expression of Ixodes scapularis Antifreeze Glycoprotein Enhances Cold Tolerance in Drosophila melanogaster. PLOS ONE 2012, 7: e33447. PMID: 22428051, PMCID: PMC3302814, DOI: 10.1371/journal.pone.0033447.Peer-Reviewed Original ResearchMeSH KeywordsAcclimatizationAnalysis of VarianceAnimalsAnimals, Genetically ModifiedAntifreeze ProteinsApoptosisCold TemperatureDrosophila melanogasterEmbryo, NonmammalianEnzyme-Linked Immunosorbent AssayFemaleImmunoblottingIn Situ Nick-End LabelingIxodesMaleMusclesOligonucleotidesReal-Time Polymerase Chain ReactionConceptsNon-freezing temperaturesD. melanogasterDrosophila melanogasterCold toleranceLow non-freezing temperaturesFemale adult fliesTransgenic D. melanogasterCold shock injuryAbility of fliesAntifreeze glycoproteinsAdult fliesMolecular basisMelanogasterFlight musclesFliesAntifreeze proteinsHatching rateHigher survival rateApoptotic damageGlycoproteinExpressionToleranceEmbryosProteinApoptosis
2005
Drosophila myosin V is required for larval development and spermatid individualization
Mermall V, Bonafé N, Jones L, Sellers JR, Cooley L, Mooseker MS. Drosophila myosin V is required for larval development and spermatid individualization. Developmental Biology 2005, 286: 238-255. PMID: 16126191, DOI: 10.1016/j.ydbio.2005.07.028.Peer-Reviewed Original ResearchConceptsInvestment conesLarval developmentClass V myosinsIndividualization complexSpermatid individualizationCytological defectsTruncation alleleVesicular trafficRNA transportActin structuresLarval tissuesMutant animalsMature spermSperm nucleiMyoVSpermatid maturationMolecular motorsMyosin VMechanochemical couplingDetectable defectsV geneMicrotubulesIndividual membranesActinSpermatogenesis
2002
A subset of dynamic actin rearrangements in Drosophila requires the Arp2/3 complex
Hudson AM, Cooley L. A subset of dynamic actin rearrangements in Drosophila requires the Arp2/3 complex. Journal Of Cell Biology 2002, 156: 677-687. PMID: 11854308, PMCID: PMC2174088, DOI: 10.1083/jcb.200109065.Peer-Reviewed Original ResearchConceptsArp2/3 complexRing canal growthActin-related proteinsParallel actin bundlesNurse cell cytoplasmActin filament nucleationDynamic actin rearrangementsActin cytoskeletonRing canalsActin structuresSlow spontaneous rateActin rearrangementPupal epitheliumPlasma membraneFilament nucleationShaft cellsActin bundlesActin filamentsComplex contributesFunction mutationsCanal growthCell cytoplasmSubunitsMutationsComplexes
2000
Physical and genetic interaction of filamin with presenilin in Drosophila
Guo Y, Zhang S, Sokol N, Cooley L, Boulianne G. Physical and genetic interaction of filamin with presenilin in Drosophila. Journal Of Cell Science 2000, 113: 3499-3508. PMID: 10984440, DOI: 10.1242/jcs.113.19.3499.Peer-Reviewed Original ResearchMeSH KeywordsAlternative SplicingAlzheimer DiseaseAmino Acid SequenceAnimalsBlotting, WesternCarrier ProteinsCloning, MolecularContractile ProteinsDrosophila melanogasterEmbryo, NonmammalianFemaleFilaminsGene Expression Regulation, DevelopmentalHumansInsect ProteinsLarvaMaleMembrane ProteinsMicrofilament ProteinsMolecular Sequence DataPresenilin-1Presenilin-2Protein BindingProtein IsoformsProtein Structure, TertiaryRecombinant Fusion ProteinsRNA, MessengerTwo-Hybrid System TechniquesConceptsN-terminal actin-binding domainOverall amino acid identityOverexpression of presenilinFamilial Alzheimer's diseaseTransmembrane domain proteinActin-binding domainAmino acid identityLarge hydrophilic loopDrosophila filaminDomain proteinsGenetic interactionsAlternative splicingHydrophilic loopAcid identityTerminal domainDrosophilaHuman filaminChromosome 3Spliced formsFilaminAdult phenotypeLoop regionPresenilinNovel familyLong form
1998
Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency
Foley K, Cooley L. Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency. Development 1998, 125: 1075-1082. PMID: 9463354, DOI: 10.1242/dev.125.6.1075.Peer-Reviewed Original ResearchConceptsEgg chambersNurse cellsDNA fragmentationDrosophila nurse cellsMutant egg chambersDrosophila egg chamberOvarian expression patternsDrosophila apoptosisGermline clonesHead involutionCytoplasm transportPositive regulatorRegulatory genesStage 13Cytoplasm transferApoptotic vesiclesCytoplasmic factorsNegative regulatorExpression patternsWild typeGenesFragmented DNAOogenesisApoptosisStage 12
1997
Examination of the function of two kelch proteins generated by stop codon suppression
Robinson D, Cooley L. Examination of the function of two kelch proteins generated by stop codon suppression. Development 1997, 124: 1405-1417. PMID: 9118811, DOI: 10.1242/dev.124.7.1405.Peer-Reviewed Original ResearchMeSH KeywordsAlanineAnimalsAnimals, Genetically ModifiedCarrier ProteinsCodon, TerminatorDrosophilaDrosophila ProteinsFemaleGene Expression Regulation, DevelopmentalImmunohistochemistryInfertility, FemaleInsect ProteinsMaleMicrofilament ProteinsMutationOogenesisOpen Reading FramesOvaryRNA, MessengerSuppression, GeneticTissue DistributionConceptsRing canalsKelch proteinStop codon suppressionStop codonCodon suppressionDrosophila kelch geneOvarian ring canalsUGA stop codonFull-length proteinOpen reading frameTissue-specific mannerUAA stop codonFemale sterilitySense codonsReading frameSingle transcriptKelch geneORF1 proteinCodonKelchDifferent tissuesProteinMutantsORF1Transcripts
1996
Single Amino Acid Mutations in Drosophila Fascin Disrupt Actin Bundling Function in Vivo
Cant K, Cooley L. Single Amino Acid Mutations in Drosophila Fascin Disrupt Actin Bundling Function in Vivo. Genetics 1996, 143: 249-258. PMID: 8722779, PMCID: PMC1207258, DOI: 10.1093/genetics/143.1.249.Peer-Reviewed Original ResearchConceptsEMS mutagenesis screenMutagenesis screenCytoplasm transportActin-bundling functionDiverse cellular processesIntragenic suppressor mutationsBundles actin filamentsCytoplasmic actin bundlesSingle amino acid mutationSerine 289Glutamic acid resultsAmino acid mutationsDominant suppressorsFascin functionFemale sterileSuppressor mutationsCellular processesC-terminusActin bundlesCentral domainActin filamentsSevere defectsMicrovillar projectionsAcid mutationsFilopodial extensions
1994
The villin-like protein encoded by the Drosophila quail gene is required for actin bundle assembly during oogenesis
Mahajan-Miklos S, Cooley L. The villin-like protein encoded by the Drosophila quail gene is required for actin bundle assembly during oogenesis. Cell 1994, 78: 291-301. PMID: 8044841, DOI: 10.1016/0092-8674(94)90298-4.Peer-Reviewed Original ResearchConceptsVillin-like proteinNurse cellsActin filament bundlesQuail geneMutant egg chambersActin bundle assemblyFilament bundlesEgg chambersFemale sterilityAdult fliesCytoplasmic transportFilamentous actinGene resultsBundle assemblyActin filamentsQuail proteinProtein villinAbsorptive epithelial cellsStriking colocalizationProteinOogenesisVillinEpithelial cellsGenesCells
1992
chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis
Cooley L, Verheyen E, Ayers K. chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 1992, 69: 173-184. PMID: 1339308, DOI: 10.1016/0092-8674(92)90128-y.Peer-Reviewed Original ResearchConceptsCytoplasmic actin networksNurse cellsDrosophila oogenesisEgg chambersCytoplasm transportActin networkPolyploid nurse cellsNurse cell nucleiFlow of cytoplasmMutant phenotypeCDNA clonesProtein 40Cytoplasmic contentsAcanthamoeba profilinCell nucleiProfilinNuclear positionOogenesisGenesChickadeesOocytesCellsYeastCytoplasmClones