2023
Evolutionarily conserved midbody remodeling precedes ring canal formation during gametogenesis
Price K, Tharakan D, Cooley L. Evolutionarily conserved midbody remodeling precedes ring canal formation during gametogenesis. Developmental Cell 2023, 58: 474-488.e5. PMID: 36898376, PMCID: PMC10059090, DOI: 10.1016/j.devcel.2023.02.008.Peer-Reviewed Original ResearchConceptsCanal formationStable intercellular bridgesGerm cell divisionMidbody ringTime-lapse imagingFemale germlineCell cytokinesisDrosophila malesRing canalsComplete cytokinesisKinase functionCell divisionCytokinesis eventsBroad functionsCytokinesisIntercellular bridgesExtensive remodelingMidbodyDrosophilaBiological systemsDisease statesImportant insightsGametogenesisGermlineProtein
2021
Tissue-specific dynamic codon redefinition in Drosophila
Hudson AM, Szabo NL, Loughran G, Wills NM, Atkins JF, Cooley L. Tissue-specific dynamic codon redefinition in Drosophila. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2012793118. PMID: 33500350, PMCID: PMC7865143, DOI: 10.1073/pnas.2012793118.Peer-Reviewed Original ResearchConceptsStop codonTranslational stop codon readthroughReadthrough efficiencyHuman tissue culture cellsStop codon readthroughTissue-specific regulationAdult central nervous system (CNS) tissueTissue culture cellsReadthrough productKelch proteinUbiquitin ligaseSingle geneAdult brainIndividual proteinsCodon readthroughReadthroughViral mRNAsC-terminalMalpighian tubulesCodonNeuronal proteinsCell typesAmino acidsCulture cellsDrosophila
2020
HtsRC-Mediated Accumulation of F-Actin Regulates Ring Canal Size During Drosophila melanogaster Oogenesis
Gerdes JA, Mannix KM, Hudson AM, Cooley L. HtsRC-Mediated Accumulation of F-Actin Regulates Ring Canal Size During Drosophila melanogaster Oogenesis. Genetics 2020, 216: 717-734. PMID: 32883702, PMCID: PMC7648574, DOI: 10.1534/genetics.120.303629.Peer-Reviewed Original ResearchConceptsGermline ring canalsRing canalsActin cytoskeletonF-actinDrosophila melanogaster oogenesisSomatic follicle cellsCombination of CRISPRF-actin accumulationF-actin recruitmentFilamentous actin cytoskeletonFemale germlineActin structuresFruit flyHigh fecundityFollicle cellsCytoskeletonGermlineOverexpressionAccumulationDrosophilaOogenesisMutagenesisCRISPRFilaminGenesDrosophila sperm development and intercellular cytoplasm sharing through ring canals do not require an intact fusome
Kaufman RS, Price KL, Mannix KM, Ayers KM, Hudson AM, Cooley L. Drosophila sperm development and intercellular cytoplasm sharing through ring canals do not require an intact fusome. Development 2020, 147: dev190140. PMID: 33033119, PMCID: PMC7687857, DOI: 10.1242/dev.190140.Peer-Reviewed Original ResearchConceptsRing canalsSperm developmentPost-meiotic haploid spermatidsGerm cellsGermline ring canalsAnimal germ cellsQuality control surveillanceLarge cytoplasmic structuresCytoplasmic informationDiploid spermatogoniaHaploid spermatidsSpecialized organellesIncomplete cytokinesisIntercellular movementCell divisionEndogenous proteinsFusomeCytoplasmic structuresIntercellular bridgesMale fertilityIntercellular trafficSpermatogenesisCellsCytokinesisNormal conditions
2019
Proximity labeling reveals novel interactomes in live Drosophila tissue
Mannix KM, Starble RM, Kaufman RS, Cooley L. Proximity labeling reveals novel interactomes in live Drosophila tissue. Development 2019, 146: dev176644. PMID: 31208963, PMCID: PMC6679357, DOI: 10.1242/dev.176644.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsAnimalsAnimals, Genetically ModifiedCell CommunicationCell DifferentiationCytological TechniquesCytoskeletonDNA-(Apurinic or Apyrimidinic Site) LyaseDrosophila melanogasterFemaleGenes, ReporterGerm CellsIntercellular JunctionsMolecular ImagingOocytesOogenesisProtein BindingProtein Interaction MapsStaining and LabelingConceptsProximity labelingIntercellular bridgesProximity-dependent biotinylationStable intercellular bridgesRC proteinDynamic actin cytoskeletonProtein interactome analysisRNA interference screenNovel interactomePrey genesUncharacterized proteinsDistinct interactomesDrosophila tissuesActin cytoskeletonInterference screenInteractome analysisLive tissueMultiple proteinsProximity ligationInteractomeGerm cellsIntercellular communicationRespective preyFunctional roleProtein
2018
Targeted substrate degradation by Kelch controls the actin cytoskeleton during ring canal expansion
Hudson AM, Mannix KM, Gerdes JA, Kottemann MC, Cooley L. Targeted substrate degradation by Kelch controls the actin cytoskeleton during ring canal expansion. Development 2018, 146: dev169219. PMID: 30559276, PMCID: PMC6340150, DOI: 10.1242/dev.169219.Peer-Reviewed Original ResearchConceptsTandem affinity purificationUbiquitin ligase complexCullin-3 functionShort sequence motifsSpecialized cytoskeletal structuresUbiquitin-proteasome systemF-actin cytoskeletonSpecialized actinLigase complexActin cytoskeletonRing canalsSequence motifsGenetic evidenceCytoskeletal structuresAffinity purificationCytoskeletonSubstrate degradationBiochemical evidenceUnusual mechanismKelchCRL3CullinMass spectrometryOogenesisMutagenesis
2015
Actin Cytoskeletal Organization in Drosophila Germline Ring Canals Depends on Kelch Function in a Cullin-RING E3 Ligase
Hudson AM, Mannix KM, Cooley L. Actin Cytoskeletal Organization in Drosophila Germline Ring Canals Depends on Kelch Function in a Cullin-RING E3 Ligase. Genetics 2015, 201: 1117-1131. PMID: 26384358, PMCID: PMC4649639, DOI: 10.1534/genetics.115.181289.Peer-Reviewed Original ResearchConceptsKelch functionE3 ligaseCullin-RING E3 ligaseGermline ring canalsActin cytoskeletal organizationDrosophila kelch proteinUbiquitin ligase activityCross-link F-actinUbiquitin E3 ligaseRing canalsKelch proteinProtein substratesCytoskeletal defectsCytoskeletal organizationCytoskeletal remodelingLigase activityCullin 3KelchF-actinCytoskeletonLigaseProteasomeVivoCul3MutagenesisThe Transgenic RNAi Project at Harvard Medical School: Resources and Validation
Perkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, Yang-Zhou D, Flockhart I, Binari R, Shim HS, Miller A, Housden A, Foos M, Randkelv S, Kelley C, Namgyal P, Villalta C, Liu LP, Jiang X, Huan-Huan Q, Wang X, Fujiyama A, Toyoda A, Ayers K, Blum A, Czech B, Neumuller R, Yan D, Cavallaro A, Hibbard K, Hall D, Cooley L, Hannon GJ, Lehmann R, Parks A, Mohr SE, Ueda R, Kondo S, Ni JQ, Perrimon N. The Transgenic RNAi Project at Harvard Medical School: Resources and Validation. Genetics 2015, 201: 843-852. PMID: 26320097, PMCID: PMC4649654, DOI: 10.1534/genetics.115.180208.Peer-Reviewed Original Research
2014
Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambers
Burn KM, Shimada Y, Ayers K, Vemuganti S, Lu F, Hudson A, Cooley L. Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambers. Developmental Biology 2014, 398: 206-217. PMID: 25481758, PMCID: PMC4340711, DOI: 10.1016/j.ydbio.2014.11.021.Peer-Reviewed Original ResearchConceptsDrosophila insulin-like peptidesEgg chambersStarvation responseBody organizationDrosophila egg chamberMotor protein dyneinNutrient-rich conditionsPoor nutrient availabilityInsulin-like peptidesProcessing bodiesDrosophila femalesGermline cellsP-bodiesNutrient availabilityDynein activityInsulin signalingProgeny survivalInsulin pathwayKinesin activityFollicle cellsMicrotubulesStarvationBovine insulinPotential mechanismsProtective responseAntivirulence Properties of an Antifreeze Protein
Heisig M, Abraham NM, Liu L, Neelakanta G, Mattessich S, Sultana H, Shang Z, Ansari JM, Killiam C, Walker W, Cooley L, Flavell RA, Agaisse H, Fikrig E. Antivirulence Properties of an Antifreeze Protein. Cell Reports 2014, 9: 417-424. PMID: 25373896, PMCID: PMC4223805, DOI: 10.1016/j.celrep.2014.09.034.Peer-Reviewed Original ResearchConceptsAntifreeze proteinsDiverse bacteriaProtein bindsWild-type animalsBiofilm formationAntivirulence agentsIAFGPMethicillin-resistant Staphylococcus aureusHost controlProteinAntifreeze glycoproteinsIxodes scapularisAntivirulence propertiesBacteriaSeptic shockTherapeutic strategiesBacterial infectionsInfectious diseasesMicrobesStaphylococcus aureusFliesBindsInfectionCatheter tubingPathogensA Regulatory Network of Drosophila Germline Stem Cell Self-Renewal
Yan D, Neumüller RA, Buckner M, Ayers K, Li H, Hu Y, Yang-Zhou D, Pan L, Wang X, Kelley C, Vinayagam A, Binari R, Randklev S, Perkins LA, Xie T, Cooley L, Perrimon N. A Regulatory Network of Drosophila Germline Stem Cell Self-Renewal. Developmental Cell 2014, 28: 459-473. PMID: 24576427, PMCID: PMC3998650, DOI: 10.1016/j.devcel.2014.01.020.Peer-Reviewed Original ResearchConceptsGermline stem cellsSelf-renewal factorsDrosophila female germline stem cellsStem cellsDifferent stem cell lineagesLarge-scale RNAi screenFemale germline stem cellsLoss of Set1Stem Cell Self-RenewalSpecific genetic networksHistone methyltransferase Set1Stem cell identityCell fate decisionsStem cell lineagesCell Self-RenewalSelf-renewal genesRNAi screenDistinct fatesFate decisionsGSC maintenanceCell identityCell fateRegulatory networksGenetic networksNeural stem cellsMethods for studying oogenesis
Hudson AM, Cooley L. Methods for studying oogenesis. Methods 2014, 68: 207-217. PMID: 24440745, PMCID: PMC4048766, DOI: 10.1016/j.ymeth.2014.01.005.Peer-Reviewed Original ResearchConceptsGAL4/UAS systemStem cell maintenanceDevelopmental cell biologyCell cycle controlClonal screensDrosophila oogenesisCell polarityWhole-mount tissuesCytoskeletal regulationEgg chambersTransgenic linesCell maintenanceIntercellular transportSomatic cellsTrap linesGamete developmentCell biologyUAS systemExcellent systemCycle controlGene expressionIntercellular communicationCell deathOogenesisCell migration
2013
Bridging the divide
McLean PF, Cooley L. Bridging the divide. Fly 2013, 8: 13-18. PMID: 24406334, PMCID: PMC3974888, DOI: 10.4161/fly.27016.Peer-Reviewed Original ResearchConceptsRing canalsMitotic clonesSomatic tissuesDrosophila somatic tissuesFollicle cellsProtein of interestNon-recombined cellsDirect cytoplasmic connectionsDrosophila oogenesisImaginal discsGenetic toolsIntercellular exchangeProtein movementCleavage furrowCytoplasmic connectionsProteinClonesCellsMosaic cellsClonal dataOogenesisGFPTissueProtein Equilibration Through Somatic Ring Canals in Drosophila
McLean PF, Cooley L. Protein Equilibration Through Somatic Ring Canals in Drosophila. Science 2013, 340: 1445-1447. PMID: 23704373, PMCID: PMC3819220, DOI: 10.1126/science.1234887.Peer-Reviewed Original ResearchConceptsRing canalsLarval imaginal discsDrosophila ovaryClone boundariesImaginal discsIncomplete cytokinesisIntercellular communicationCytoplasmic contentsFollicle cellsIntercellular bridgesTissue biologyProtein expressionConnected cellsDrosophilaCytokinesisCellsBiologyProteinTissueExpressionOvaries
2012
Expression of Ixodes scapularis Antifreeze Glycoprotein Enhances Cold Tolerance in Drosophila melanogaster
Neelakanta G, Hudson AM, Sultana H, Cooley L, Fikrig E. Expression of Ixodes scapularis Antifreeze Glycoprotein Enhances Cold Tolerance in Drosophila melanogaster. PLOS ONE 2012, 7: e33447. PMID: 22428051, PMCID: PMC3302814, DOI: 10.1371/journal.pone.0033447.Peer-Reviewed Original ResearchMeSH KeywordsAcclimatizationAnalysis of VarianceAnimalsAnimals, Genetically ModifiedAntifreeze ProteinsApoptosisCold TemperatureDrosophila melanogasterEmbryo, NonmammalianEnzyme-Linked Immunosorbent AssayFemaleImmunoblottingIn Situ Nick-End LabelingIxodesMaleMusclesOligonucleotidesReal-Time Polymerase Chain ReactionConceptsNon-freezing temperaturesD. melanogasterDrosophila melanogasterCold toleranceLow non-freezing temperaturesFemale adult fliesTransgenic D. melanogasterCold shock injuryAbility of fliesAntifreeze glycoproteinsAdult fliesMolecular basisMelanogasterFlight musclesFliesAntifreeze proteinsHatching rateHigher survival rateApoptotic damageGlycoproteinExpressionToleranceEmbryosProteinApoptosis
2011
Intercellular protein movement in syncytial Drosophila follicle cells
Airoldi SJ, McLean PF, Shimada Y, Cooley L. Intercellular protein movement in syncytial Drosophila follicle cells. Journal Of Cell Science 2011, 124: 4077-4086. PMID: 22135360, PMCID: PMC3244987, DOI: 10.1242/jcs.090456.Peer-Reviewed Original ResearchConceptsImaginal disc cellsRing canalsFollicle cellsPavarotti kinesin-like proteinDrosophila follicle cellsIntercellular protein movementEgg chamber developmentKinesin-like proteinMitotic cleavage furrowsLive-cell confocal microscopyDisc cellsBroad functional significanceDrosophila germlineGermline cellsCytoplasmic proteinsSomatic cellsProtein movementCleavage furrowFunctional significanceChamber developmentSyncytial organizationConfocal microscopyGermlineProteinCellsReversible response of protein localization and microtubule organization to nutrient stress during Drosophila early oogenesis
Shimada Y, Burn KM, Niwa R, Cooley L. Reversible response of protein localization and microtubule organization to nutrient stress during Drosophila early oogenesis. Developmental Biology 2011, 355: 250-262. PMID: 21570389, PMCID: PMC3118931, DOI: 10.1016/j.ydbio.2011.04.022.Peer-Reviewed Original ResearchConceptsEgg chambersNutrient stressIntercellular transportMT reorganizationNutrient availabilityNurse cellsPutative RNA binding proteinMT-dependent mannerRNA binding proteinYpsilon SchachtelDrosophila oogenesisProcessing bodiesProtein localizationEarly oogenesisNutrient deprivationMicrotubule organizationMetabolic checkpointCytoplasmic componentsAnimal oocytesStress responseYolk uptakeBinding proteinPrevitellogenic stageOogenesisIndependent mechanisms
2010
Drosophila Kelch functions with Cullin-3 to organize the ring canal actin cytoskeleton
Hudson AM, Cooley L. Drosophila Kelch functions with Cullin-3 to organize the ring canal actin cytoskeleton. Journal Of Cell Biology 2010, 188: 29-37. PMID: 20065088, PMCID: PMC2812842, DOI: 10.1083/jcb.200909017.Peer-Reviewed Original ResearchConceptsDrosophila KelchCullin 3Cullin-RING ubiquitin E3 ligasesGermline ring canalsSubstrate adaptor proteinCullin-RING ligaseDiverse protein familiesF-actin cytoskeletal structureUbiquitin E3 ligasesProtein ubiquitylationActin cytoskeletonE3 ligasesRing canalsAdaptor proteinProtein familySequence motifsCytoskeletal structuresFilamentous actinKelchProteinUbiquitylationLigasesCytoskeletonLigaseRepeats
2007
Mononuclear muscle cells in Drosophila ovaries revealed by GFP protein traps
Hudson AM, Petrella LN, Tanaka AJ, Cooley L. Mononuclear muscle cells in Drosophila ovaries revealed by GFP protein traps. Developmental Biology 2007, 314: 329-340. PMID: 18199432, PMCID: PMC2293129, DOI: 10.1016/j.ydbio.2007.11.029.Peer-Reviewed Original ResearchConceptsMuscle specificationEpithelial sheath cellsMyoblast fusionSheath cellsProtein trapSarcomere organizationFLP/FRT systemMononuclear muscle cellsMuscle cellsDrosophila ovaryGonadal mesodermGenetic mosaicsKey genesTrap linesFRT systemGenetic analysisHuman muscle physiologySomatic musclesVisceral musclesSingle nucleusClonal analysisFemale reproductive systemMuscle physiologyEpithelial sheathModel systemJagunal is required for reorganizing the endoplasmic reticulum during Drosophila oogenesis
Lee S, Cooley L. Jagunal is required for reorganizing the endoplasmic reticulum during Drosophila oogenesis. Journal Of Cell Biology 2007, 176: 941-952. PMID: 17389229, PMCID: PMC2064080, DOI: 10.1083/jcb.200701048.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceCaenorhabditis elegansCell DifferentiationConserved SequenceCytoplasmic StreamingDrosophila melanogasterDrosophila ProteinsEndoplasmic ReticulumExocytosisGolgi ApparatusMembrane ProteinsMicroscopy, Electron, TransmissionMolecular Sequence DataOocytesOogenesisProtein TransportSequence Homology, Amino AcidSequence Homology, Nucleic AcidTransport VesiclesZebrafishConceptsVesicular trafficMembrane trafficEndoplasmic reticulumER reorganizationER membrane proteinsDrosophila melanogaster oocytesDrosophila oogenesisMembrane proteinsOocyte endoplasmic reticulumLateral membranesER clusteringReticulumImportant mechanismVitellogenesisOocytesOogenesisEndocytosisReorganizationProteinMembraneCells