2019
Proximity labeling reveals novel interactomes in live Drosophila tissue
Mannix KM, Starble RM, Kaufman RS, Cooley L. Proximity labeling reveals novel interactomes in live Drosophila tissue. Development 2019, 146: dev176644. PMID: 31208963, PMCID: PMC6679357, DOI: 10.1242/dev.176644.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsAnimalsAnimals, Genetically ModifiedCell CommunicationCell DifferentiationCytological TechniquesCytoskeletonDNA-(Apurinic or Apyrimidinic Site) LyaseDrosophila melanogasterFemaleGenes, ReporterGerm CellsIntercellular JunctionsMolecular ImagingOocytesOogenesisProtein BindingProtein Interaction MapsStaining and LabelingConceptsProximity labelingIntercellular bridgesProximity-dependent biotinylationStable intercellular bridgesRC proteinDynamic actin cytoskeletonProtein interactome analysisRNA interference screenNovel interactomePrey genesUncharacterized proteinsDistinct interactomesDrosophila tissuesActin cytoskeletonInterference screenInteractome analysisLive tissueMultiple proteinsProximity ligationInteractomeGerm cellsIntercellular communicationRespective preyFunctional roleProtein
2015
The Transgenic RNAi Project at Harvard Medical School: Resources and Validation
Perkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, Yang-Zhou D, Flockhart I, Binari R, Shim HS, Miller A, Housden A, Foos M, Randkelv S, Kelley C, Namgyal P, Villalta C, Liu LP, Jiang X, Huan-Huan Q, Wang X, Fujiyama A, Toyoda A, Ayers K, Blum A, Czech B, Neumuller R, Yan D, Cavallaro A, Hibbard K, Hall D, Cooley L, Hannon GJ, Lehmann R, Parks A, Mohr SE, Ueda R, Kondo S, Ni JQ, Perrimon N. The Transgenic RNAi Project at Harvard Medical School: Resources and Validation. Genetics 2015, 201: 843-852. PMID: 26320097, PMCID: PMC4649654, DOI: 10.1534/genetics.115.180208.Peer-Reviewed Original ResearchMeSH KeywordsAccess to InformationAnimalsAnimals, Genetically ModifiedBiomedical ResearchBostonDrosophilaGenes, InsectGenetic VectorsRNA InterferenceSchools, Medical
2012
Expression of Ixodes scapularis Antifreeze Glycoprotein Enhances Cold Tolerance in Drosophila melanogaster
Neelakanta G, Hudson AM, Sultana H, Cooley L, Fikrig E. Expression of Ixodes scapularis Antifreeze Glycoprotein Enhances Cold Tolerance in Drosophila melanogaster. PLOS ONE 2012, 7: e33447. PMID: 22428051, PMCID: PMC3302814, DOI: 10.1371/journal.pone.0033447.Peer-Reviewed Original ResearchMeSH KeywordsAcclimatizationAnalysis of VarianceAnimalsAnimals, Genetically ModifiedAntifreeze ProteinsApoptosisCold TemperatureDrosophila melanogasterEmbryo, NonmammalianEnzyme-Linked Immunosorbent AssayFemaleImmunoblottingIn Situ Nick-End LabelingIxodesMaleMusclesOligonucleotidesReal-Time Polymerase Chain ReactionConceptsNon-freezing temperaturesD. melanogasterDrosophila melanogasterCold toleranceLow non-freezing temperaturesFemale adult fliesTransgenic D. melanogasterCold shock injuryAbility of fliesAntifreeze glycoproteinsAdult fliesMolecular basisMelanogasterFlight musclesFliesAntifreeze proteinsHatching rateHigher survival rateApoptotic damageGlycoproteinExpressionToleranceEmbryosProteinApoptosis
2011
Intercellular protein movement in syncytial Drosophila follicle cells
Airoldi SJ, McLean PF, Shimada Y, Cooley L. Intercellular protein movement in syncytial Drosophila follicle cells. Journal Of Cell Science 2011, 124: 4077-4086. PMID: 22135360, PMCID: PMC3244987, DOI: 10.1242/jcs.090456.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedCell NucleusCloning, MolecularCytoplasmDrosophilaDrosophila ProteinsFemaleGiant CellsImaginal DiscsOogenesisOvarian FollicleProtein TransportTransgenesConceptsImaginal disc cellsRing canalsFollicle cellsPavarotti kinesin-like proteinDrosophila follicle cellsIntercellular protein movementEgg chamber developmentKinesin-like proteinMitotic cleavage furrowsLive-cell confocal microscopyDisc cellsBroad functional significanceDrosophila germlineGermline cellsCytoplasmic proteinsSomatic cellsProtein movementCleavage furrowFunctional significanceChamber developmentSyncytial organizationConfocal microscopyGermlineProteinCells
2005
Drosophila myosin V is required for larval development and spermatid individualization
Mermall V, Bonafé N, Jones L, Sellers JR, Cooley L, Mooseker MS. Drosophila myosin V is required for larval development and spermatid individualization. Developmental Biology 2005, 286: 238-255. PMID: 16126191, DOI: 10.1016/j.ydbio.2005.07.028.Peer-Reviewed Original ResearchConceptsInvestment conesLarval developmentClass V myosinsIndividualization complexSpermatid individualizationCytological defectsTruncation alleleVesicular trafficRNA transportActin structuresLarval tissuesMutant animalsMature spermSperm nucleiMyoVSpermatid maturationMolecular motorsMyosin VMechanochemical couplingDetectable defectsV geneMicrotubulesIndividual membranesActinSpermatogenesis
1997
Examination of the function of two kelch proteins generated by stop codon suppression
Robinson D, Cooley L. Examination of the function of two kelch proteins generated by stop codon suppression. Development 1997, 124: 1405-1417. PMID: 9118811, DOI: 10.1242/dev.124.7.1405.Peer-Reviewed Original ResearchMeSH KeywordsAlanineAnimalsAnimals, Genetically ModifiedCarrier ProteinsCodon, TerminatorDrosophilaDrosophila ProteinsFemaleGene Expression Regulation, DevelopmentalImmunohistochemistryInfertility, FemaleInsect ProteinsMaleMicrofilament ProteinsMutationOogenesisOpen Reading FramesOvaryRNA, MessengerSuppression, GeneticTissue DistributionConceptsRing canalsKelch proteinStop codon suppressionStop codonCodon suppressionDrosophila kelch geneOvarian ring canalsUGA stop codonFull-length proteinOpen reading frameTissue-specific mannerUAA stop codonFemale sterilitySense codonsReading frameSingle transcriptKelch geneORF1 proteinCodonKelchDifferent tissuesProteinMutantsORF1Transcripts